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Preface

Metaheuristics have often been shown to be effective for difficult combinatorial
optimization problems appearing in various industrial, economical, and scientific
domains. Prominent examples of metaheuristics are evolutionary algorithms,
simulated annealing, tabu search, scatter search, memetic algorithms, variable
neighborhood search, iterated local search, greedy randomized adaptive search
procedures, estimation of distribution algorithms, and ant colony optimization.
Successfully solved problems include scheduling, timetabling, network design,
transportation and distribution, vehicle routing, the traveling salesman problem,
satisfiability, packing and cutting, and general mixed integer programming.

EvoCOP began in 2001 and has been held annually since then. It was the
first event specifically dedicated to the application of evolutionary computation
and related methods to combinatorial optimization problems. Originally held as
a workshop, EvoCOP became a conference in 2004. The events gave researchers
an excellent opportunity to present their latest research and to discuss current
developments and applications as well as providing for improved interaction
between members of this scientific community. Following the general trend of
hybrid metaheuristics and diminishing boundaries between the different classes
of metaheuristics, EvoCOP has broadened its scope over the last years and
invited submissions on any kind of metaheuristic for combinatorial optimization.

This volume contains the proceedings of EvoCOP 2007, the seventh Euro-
pean Conference on Evolutionary Computation in Combinatorial Optimization.
It was held in Valencia, Spain, April 11–13, 2007, jointly with EuroGP 2007,
the Tenth European Conference on Genetic Programming, EvoBIO 2007, the
Fifth European Conference on Evolutionary Computation and Machine Learn-
ing in Bioinformatics, and EvoWorkshops 2007, which consisted of the follow-
ing seven individual workshops: EvoCOMNET, the Fourth European Workshop
on the Application of Nature-Inspired Techniques to Telecommunication Net-
works and Other Connected Systems; EvoFIN, the First European Workshop
on Evolutionary Computation in Finance and Economics; EvoIASP, the Ninth
European Workshop on Evolutionary Computation in Image Analysis and Sig-
nal Processing; EvoInteraction, the Second European Workshop on Interactive
Evolution and Humanized Computational Intelligence; EvoMUSART, the Fifth
European Workshop on Evolutionary Music and Art; EvoSTOC, the Fourth
European Workshop on Evolutionary Algorithms in Stochastic and Dynamic
Environments, and EvoTransLog, the First European Workshop on Evolution-
ary Computation in Transportation and Logistics. Since 2007, all these events
are grouped under the collective name EvoStar, and constitute Europe’s premier
co-located meetings on evolutionary computation.

Accepted papers of previous EvoCOP editions were published by Springer
in the series Lecture Notes in Computer Science (LNCS – Volumes 2037, 2279,
2611, 3004, 3448, and 3906).
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VI Preface

EvoCOP Submitted Accepted Acceptance ratio
2001 31 23 74.2%
2002 32 18 56.3%
2003 39 19 48.7%
2004 86 23 26.7%
2005 66 24 36.4%
2006 77 24 31.2%
2007 81 21 25.9%

The rigorous, double-blind reviewing process of EvoCOP 2007 resulted in a
strong selection among the submitted papers; the acceptance rate was 25.9%.
Each paper was reviewed by at least three members of the International Program
Committee. All accepted papers were presented orally at the conference and are
included in this proceedings volume. We would like to credit the members of
our Program Committee, to whom we are very grateful for their quick and
thorough work and the valuable advice on how to improve papers for the final
publication. EvoCOP 2007 contributions deal with representations, heuristics,
analysis of problem structures, and comparisons of algorithms. The list of studied
combinatorial optimization problems includes prominent examples like graph
coloring, knapsack problems, the traveling salesperson problem, scheduling, as
well as specific real-world problems.

We would like to express our sincere gratitude to the internationally renowned
invited speakers who gave the keynote talks at the conference: Ricard V. Solé,
head of the Complex Systems Lab at the University Pompeu Fabra, Chris Adami,
head of the Digital Life Lab at the California Institute of Technology, and Alan
Bundy, from the Centre for Intelligent Systems and their Applications, School
of Informatics at the University of Edinburgh.

The success of the conference resulted from the input of many people, to
whom we would like to express our appreciation. We thank Marc Schoenauer
for providing the Web-based conference management system. The local organiz-
ers, led by Anna Isabel Esparcia-Alcázar, did an extraordinary job for which
we are very grateful. We thank the Universidad Politécnica de Valencia, Spain,
for their institutional and financial support and for providing premises and ad-
ministrative assistance, the Instituto Tecnológico de Informática in Valencia for
cooperation and help with local arrangements, and the Spanish Ministerio de
Educación y Ciencia for their financial support. Thanks are also due to Jennifer
Willies and the Centre for Emergent Computing at Napier University in Edin-
burgh, Scotland, for administrative support and event coordination. Last, but
not least, we would especially like to thank Jens Gottlieb and Günther Raidl
for their support and guidance, to whom we owe a lot. From their hard work
and dedication, EvoCOP 2007 has now become one of the reference events in
evolutionary computation.

April 2007 Carlos Cotta
Jano van Hemert
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A New Local Search Algorithm for the DNA

Fragment Assembly Problem

Enrique Alba and Gabriel Luque

Grupo GISUM, Departamento de LCC
E.T.S.I. Informática

Campus Teatinos, 29071 Málaga (Spain)
{eat,gabriel}@lcc.uma.es

Abstract. In this paper we propose and study the behavior of a new
heuristic algorithm for the DNA fragment assembly problem: PALS. The
DNA fragment assembly is a problem to be solved in the early phases
of the genome project and thus is very important since the other steps
depend on its accuracy. This is an NP-hard combinatorial optimization
problem which is growing in importance and complexity as more research
centers become involved on sequencing new genomes. Various heuristics,
including genetic algorithms, have been designed for solving the frag-
ment assembly problem, but since this problem is a crucial part of any
sequencing project, better assemblers are needed. Our proposal is a very
efficient assembler that allows to find optimal solutions for large instances
of this problem, considerably faster than its competitors and with high
accuracy.

1 Introduction

With the advance of computational science, bioinformatics has become more
and more attractive to researchers in the field of computational biology. Ge-
nomic data analysis using computational approaches is very popular as well.
The primary goal of a genomic project is to determine the complete sequence
of the genome and its genetic contents. Thus, a genome project is accomplished
in two steps, the first one is the genome sequencing and the second one is the
genome annotation (i.e., the process of identifying the boundaries between genes
and other features in raw DNA sequence).

In this paper, we focus on the genome sequencing, which is also known as
the DNA fragment assembly problem. The fragment assembly occurs in the
very beginning of the process and therefor other steps depend on its accuracy.
At present, DNA sequences that are longer than 600 base-pairs (bps) cannot
routinely be sequenced accurately. For example, human DNA is about 3.2 billion
nucleotides in length and cannot be read at once. Hence, large strands of DNA
need to be broken into small fragments for sequencing in a process called shotgun
sequencing. In this approach, several copies of a portion of DNA are each broken
into many segments short enough to be sequenced automatically by machine.
But this process does not keep neither the ordering of the fragments nor the

C. Cotta and J. van Hemert (Eds.): EvoCOP 2007, LNCS 4446, pp. 1–12, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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2 E. Alba and G. Luque

portion from which a particular fragment came. This leads to the DNA fragment
assembly problem [1] in which these short sequences have to be reassembled to
their (supposed) original form. The automation allows shotgun sequencing to
proceed far faster than traditional methods. But comparing all the tiny pieces
and matching up the overlaps requires massive computation.

The assembly problem is therefore a combinatorial optimization problem that,
even in the absence of noise, is NP-hard: given k fragments, there are 2kk! possi-
ble combinations. Over the past decade a number of fragment assembly packages
have been developed and used to sequence different organisms. The most popu-
lar packages are PHRAP [2], TIGR assembler [3], STROLL [4], CAP3 [5], Celera
assembler [6], and EULER [7]. These packages deal with the previously described
challenges to different extents, but none of them solves all of them. Each package
automates fragment assembly using a variety of algorithms. The most popular
techniques are greedy-based while other approaches have tackled the problem
with metaheuristics [8]. This work reports on the design and implementation of
a new problem aware local search algorithm to find fast and accurate solutions for
large instances of the DNA fragment assembly problem. We additionally study
the behavior of several variants of the basic method. Finally, we also compare
the results of our approach with the ones of classical (real world) assemblers in
order to test the actual interest of our method.

The remainder of this paper is organized as follows. In the next section, we
present background information about the DNA fragment assembly problem. In
Section 3, the details of our proposed heuristic are presented. We analyze the
results of our experiments in Section 4. Finally, we end this paper by giving our
final thoughts and conclusions in Section 5.

2 The DNA Fragment Assembly Problem

In order to determine the function of specific genes, scientists have learned to
read the sequence of nucleotides comprising a DNA sequence in a process called
DNA sequencing. To do that, multiple exact copies of the original DNA sequence
are made. Each copy is then cut into short fragments at random positions. These
are the first three steps depicted in Fig. 1 and they take place in the laboratory.
After the fragment set is obtained, a traditional assemble approach is followed in
this order: overlap, layout, and then consensus. To ensure that enough fragments
overlap, the reading of fragments continues until a coverage is satisfied. These
steps are the last three ones in Fig. 1. In what follows, we give a brief description
of each of the three phases, namely overlap, layout, and consensus.

Overlap Phase - Finding the overlapping fragments. This phase consists of
finding the best or longest match between the suffix of one sequence and the
prefix of another. In this step, we compare all possible pairs of fragments to
determine their similarity. Usually, a dynamic programming algorithm applied
to semiglobal alignment is used in this step. The intuition behind finding the
pairwise overlap is that fragments with a significant overlap score are very likely
next to each other in the target sequence.
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A New Local Search Algorithm for the DNA Fragment Assembly Problem 3

1. Duplicate and

2. Sonicate

3. Sequence

4. Call Bases

CCGTAGCCGGGATCCCGTCC

CCCGAACAGGCTCCCGCCGTAGCCG

AAGCTTTTTCCCGAACAGGCTCCCG

CCGTAGCCGGGATCCCGTCC

CCCGAACAGGCTCCCGCCGTAGCCG

AAGCTTTTCTCCCGAACAGGCTCCCG

5. Layout

AAGCTTTTCTCCCGAACAGGCTCCCGCCGTAGCCGGGATCCCGTCC

6. Call Consensus

Fig. 1. Graphical representation of DNA sequencing and assembly

Layout Phase - Finding the order of fragments based on the computed sim-
ilarity score. This is the most difficult step because it is hard to tell the true
overlap due to the following challenges:

1. Unknown orientation: After the original sequence is cut into many fragments,
the orientation is lost. One does not know which strand should be selected.
If one fragment does not have any overlap with another, it is still possible
that its reverse complement might have such an overlap.
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4 E. Alba and G. Luque

2. Base call errors: There are three types of base call errors: substitution, in-
sertion, and deletion errors. They occur due to experimental errors in the
electrophoresis procedure (the method used in the laboratories to read the
ADN sequences). Errors affect the detection of fragment overlaps. Hence,
the consensus determination requires multiple alignments in highly coverage
regions.

3. Incomplete coverage: It happens when the algorithm is not able to assemble
a given set of fragments into a single contig. A contig is a sequence in which
the overlap between adjacent fragments is greater or equal to a predefined
threshold (cutoff parameter).

4. Repeated regions: “Repeats” are sequences that appear two or more times in
the target DNA. Repeated regions have caused problems in many genome-
sequencing projects, and none of the current assembly programs can handle
them perfectly.

5. Chimeras and contamination: Chimeras arise when two fragments that are
not adjacent or overlapping on the target molecule join together into one
fragment. Contamination occurs due to the incomplete purification of the
fragment from the vector DNA.

After the order is determined, the progressive alignment algorithm is applied
to combine all the pairwise alignments obtained in the overlap phase.

Consensus Phase - Deriving the DNA sequence from the layout. The most
common technique used in this phase is to apply the majority rule in building
the consensus.

To measure the quality of a consensus, we can look at the distribution of the
coverage. Coverage at a base position is defined as the number of fragments at
that position. It is a measure of the redundancy of the fragment data, and it
denotes the number of fragments, on average, in which a given nucleotide in the
target DNA is expected to appear. It is computed as the number of bases read
from fragments over the length of the target DNA [1].

Coverage =
∑n

i=1 length of the fragment i

target sequence length
(1)

where n is the number of fragments. The higher the coverage, the fewer number
of the gaps, and the better the result.

3 Our Proposal: Problem Aware Local Search (PALS)

Classical assemblers use fitness functions that favor solutions in which strong
overlap occurs between adjacent fragments in the layouts, using equations like 2
[9] (where wi,j is the overlap between fragments i and j). But the actual objective
is to obtain an order of the fragments that minimizes the number of contigs, with
the goal of reaching one single contig, i.e., a complete DNA sequence composed
of all the overlapping fragments. Therefore, the number of contigs is used as a
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A New Local Search Algorithm for the DNA Fragment Assembly Problem 5

high-level criterion to judge the whole quality of the results since it is difficult to
capture the dynamics of the problem into other mathematical functions. Contig
values are computed by applying a final step of refinement with a greedy heuristic
regularly used in this domain [10]. We have even found that in some (extreme)
cases it is possible that a solution with a better fitness using F than other one
generates a larger number of contigs (worse solution). All this suggests that the
fitness (overlapping) should be complemented with the actual number of contigs.

F (s) =
N−1∑

i=0

ws[i],s[i+1] (2)

However, the calculation of the number of contigs is a quite time-consuming
operations, and this definitely precludes any algorithm to use it. A solution to
this problem is the utilization of the method which should not need to know the
exact number of contigs and thus be computationally light. Our key contribution
is to indirectly estimate the number of contigs by measuring the number of
contigs that are created or destroyed when tentative solutions are manipulated.
We propose a variation of Lin’s 2-opt [11] for the DNA field, which does not only
use the overlap among the fragments, but that it also takes into account (in an
intelligent manner) the number of contigs that have been created or destroyed.
The pseudo-code of our proposed method is shown in Algorithm 1.

Algorithm 1. PALS
s← GenerateInitialSolution() {Create the initial solution}
repeat

L← ∅
for i = 0 to N do

for j = 0 to N do
Δc, Δf ← CalculaeDelta(s,i,j) {See Algorithm 2}
if Δc >= 0 then

L← L∪ < i, j, Δf , Δc > {Add candidate movements to L}
end if

end for
end for
if L <> ∅ then

< i, j, Δf , Δc >← Select(L) {Select a movement among the candidates}
ApplyMovement(s,i,j) {Modify the solution}

end if
until no changes
return: s

Our algorithm works on a single solution (an integer permutation encoding
a sequence of fragment numbers, where consecutive fragments overlap) which
is generated using the GenerateInitialSolution method, and it is iteratively
modified by the application of movements in a structured manner. A movement
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6 E. Alba and G. Luque

is a perturbation (ApplyMovement method) that, given a solution s, and two
positions i and j, reverses the subpermutation between the positions i and j.

The key step in PALS is the calculation of the variation in the overlap (Δf )
and in the number of contigs (Δc) among the current solution and the resulting
solution of applying a movement (see Algorithm 2). This calculation is compu-
tationally light since we do not calculate neither the fitness function nor the
number of contigs, but instead we estimate the variation of these values. To do
this, we only need to analyze the affected fragments by the tentative movement
(i, j, i − 1 and j + 1), removing the overlap score of affected fragments of the
current solution and adding the one of the modified solution to Δf (equations of
lines 4-5 of Algorithm 2) and testing if some current contig is broken (first two
if statements of Algorithm 2) or two contigs are merged (last two if statements
of Algorithm 2) by the movement operator.

Algorithm 2. CalculateDelta(s,i,j) function
Δc ← 0
Δf ← 0
{Calculate the variation in the overlap}
Δf = ws[i−1]s[j] + ws[i]s[j+1) {Add the overlap of the modified solution}
Δf = Δf −ws[i−1],s[i] − ws[j]s[j+1] {Remove the overlap of the current solution}
{Test if a contig is broken, and if so, it increases the number of contigs}
if ws[i−1]s[i] > cutoff then

Δc = Δc + 1
end if
if ws[j]s[j+1] > cutoff then

Δc = Δc + 1
end if
{Test if two contig are merged, and if so, it decreases the number of contigs}
if ws[i−1]s[j] > cutoff then

Δc = Δc − 1
end if
if ws[i]s[j+1] > cutoff then

Δc = Δc − 1
end if
return: Δf , Δc

In each iteration, PALS makes these calculations for all possible movements,
storing the candidate movements in a list L. Our proposed method only considers
candidates to be applied the movements which do not reduce the number of
contigs (Δc ≤ 0). Once it has completed the previous calculations, the method
selects a movement of the list L and applies it. The algorithm stops when no
more candidate movements are generated.

To complete the definition of our method we must decide how the initial
solution is generated (GenerationInitialSolution method) and how a
movement is selected among all possible candidates (Select method). For each
one of these operations we propose in this work several versions:
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A New Local Search Algorithm for the DNA Fragment Assembly Problem 7

Generation of the Initial Solution:

– random: The initial (permutation) solution is randomly generated.
– greedy: We begin the permutation with a random fragment and the remain-

ing ones are iteratively assigned maximizing the overlap with respect to the
last precedent fragment in the partial permutation.

Selection of the Movements:

– best: We select the best movement, i.e., we choose the movement having the
lowest Δc (thus the movement maintains or reduces the number of contigs).
In case that several movements have the same Δc, the applied movement
will be this with a higher Δf value (it increases the overlap among the
fragments).

– first: This strategy selects the first movement which does not increase the
number of contigs (Δc ≤ 0).

– random: This selection method chooses a random movement among all
candidate ones.

In the next section, we study the influence of these alternatives on the per-
formance of the method.

4 Experimental Results

In this section we analyze the behavior of our proposed method. First, the target
problem instances used are presented in Section 4.1. In the next subsection, we
study the influence of the different variations presented in Section 3 in the per-
formance of our algorithm, and finally in Section 4.3, we compare our approach
with other assemblers.

The experiments have been executed on a Intel Pentium IV 2.8GHz with
512MB running SuSE Linux 8.1. Because of the stochastic nature of the algo-
rithms, we perform 30 independent runs of each test to gather meaningful ex-
perimental data and apply statistical confidence metrics to validate our results
and conclusions.

4.1 Target Problem Instances

To test and analyze the performance of our algorithm we generated several prob-
lem instances with GenFrag [12]. GenFrag takes a known DNA sequence and uses
it as a parent strand from which random fragments are generated according to
the criteria supplied by the user (mean fragment length and coverage of parent
sequence).

We have chosen four sequences from the NCBI web site1: a human MHC
class II region DNA with fibronectin type II repeats HUMMHCFIB, with ac-
cession number X60189, which is 3,835 bases long; a human apolopoprotein
1 http://www.ncbi.nlm.nih.gov/
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8 E. Alba and G. Luque

HUMAPOBF, with accession number M15421, which is 10,089 bases long; the
complete genome of bacteriophage lambda, with accession number J02459, which
is 20k bases long; and the Neurospora crassa (common bread mold) BAC, with
accession number BX842596, which is 77,292 bases long. The instances generated
are free from errors of types 4 and 5 (see Section 2) and the remainder errors
are considered and eliminated during the calculation of the overlap among the
fragments.

We must remark that the benchmark is large and complex. It is often the case
that researches use only one or two instances of low-medium sizes (15-30k bases
long). We dare to include two large instances (up to 77k bases long) because
the efficiency of our technique, that will be shown to be competitive to modern
assemblers.

Table 1. Information of datasets. Accession numbers are used as instance names.

Parameters
Instance

X60189 M15421 J02459 BX842596

Coverage 4 5 5 6 5 7 7 4 7

Mean fragment length 395 386 343 387 398 383 405 708 703

Number of fragments 39 48 66 68 127 177 352 442 773

We experimented with coverage ranging from 4 to 7. The latter instances
are very hard since they are generated from very long sequences using a
small/medium value of coverage and a very restrictive cutoff (threshold to join
adjacent fragments in the same contig). The combination of these parameters
produces a very complex instance. For example, longer target sequences have
been solved in the literature [5], however they have a higher coverage which
makes then not so difficult. The reason is that the coverage measures the redun-
dance of the data, and the higher coverage, the easier the problem. The cutoff,
which we have set to thirty (a very high value), provides one filter for spurious
overlaps introduced by experimental error. Instances with these features have
been only solved adequately when target sequences vary from 20k to 50k base
pairs [9,10,13] while we solve instances up to 70k base pairs.

Table 1 presents information about the specific fragments sets we use to test
our algorithm.

4.2 Performance Analysis

In this section we analyze the influence of different alternative methods pre-
sented in Section 3 on the performance of our method. We study the six versions:
the combinations of two solution generation methods (random or greedy) and
three movement selection methods (best, first and, random movements). We
have applied these six methods to solve the eight problem instances presented
in Table 1. In Table 2 (accuracy) we include the mean final fitness value and
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Table 2. Solution quality (mean fitness and mean number of contigs) for all the in-
stances

Sol. Gen. random greedy
Mov. Sel. best first random best first random
X60189(4) 11451 / 1 11447 / 1 7937 / 3.3 11344 / 1.1 11334 / 1.1 11072 / 1.3
X60189(5) 13932 / 1.5 13897 / 2 11102 / 3.4 13768 / 2.5 13766 / 2.5 13021 / 3.5
X60189(6) 18204 / 1.2 18160 / 1.6 174786 / 3.1 17900 / 1.6 17889 / 1.8 17184 / 2.5
X60189(7) 20968 / 1.5 21051.9 / 1.8 16791 / 3.6 20857 / 2.3 20826 / 2.1 20227 / 3.3
M15421(5) 38454 / 3.6 38370.0 / 4.6 27191 / 10.3 38349 / 5.0 38286 / 5.6 36473 / 9.1
M15421(7) 54666 / 2.8 54852 / 3.2 41182 / 10.3 54344 / 5.1 54393 / 5.3 51609 / 10.7
J02459(7) 115405 / 3.2 115525 / 3.6 81954 / 19.5 114455 / 8.2 114255 / 8.3 109123 / 17.3
BX8425(4) 226744 / 9.9 226363 / 14.1 161891 / 37.6 224656 / 17.9 224689 / 17.5 213589 / 26.4
BX8425(7) 440779 / 7.8 441519 / 10.6 331252 / 42.4 436996 / 22.9 437088 / 22.4 416917 / 37.9

the mean resulting number of contigs, while in Table 3 (efficiency) we show the
mean execution time.

Looking at Table 2, the first conclusion is that the method using a random so-
lution generation always achieves a higher accuracy than the one using a greedy
generation. The reason of this counterintuitive result is that the greedy generates
a high quality solution (especially, for the easiest instances, X60189 and M15421)
and then the local search mechanism is not able to further improve it: the method
sticks in a local optimum and can not escape from it. In fact, the execution time
(Table 3) confirms this hypothesis since we can observe that the execution time
using the greedy generation is much lower than the random one, indicating that
the former converged very quickly. Analyzing the different movement selection,
we can conclude that the selection of the best movement is the most accurate one
for all the instances, while the random selection is the worse, producing very low
quality solutions (with several tens of contigs for the most complex instances,
BX842596). The structured strategy of movements (it performs an ordered im-
provement in the permutation) followed by the first selection seems also to be
adequate to this problem, obtaining quite good results only slightly worse than
the best selection method. Also, we can notice that there are several instances
(X60189(4), M15421(7), J02459(7) and, BX842596(7)) where the version which
produces the best mean number of contigs is different to the one which obtains
the best mean fitness, indicating that the optimization of the overlap among the
fragments is not the same as the optimization of the number of contigs (the real
objective).

With respect to the execution time, as we stated before, the utilization of
the greedy generation allows to reduce the execution time since it converges to
suboptimal solutions quickly. With respect to the movement selection method,
the random one is the slower since it needs to perform much more movements
than the other selection methods. On the other hand, first movement strategy is
the fastest since the other methods need to explore all possible movements, while
it stops the exploration when it finds a movement which does not increase the
number of contigs. Anyway, since all running times are very small, the difference
in most of the cases (especially for the easiest ones) are negligible.
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10 E. Alba and G. Luque

Table 3. Mean execution time for all the instances (in seconds)

Solution Gen. random greedy

Movement Sel. best first random best first random

X60189(4) 0.032 0.035 0.034 0.037 0.031 0.035
X60189(5) 0.032 0.032 0.042 0.028 0.034 0.039
X60189(6) 0.048 0.039 0.050 0.043 0.051 0.054
X60189(7) 0.041 0.048 0.054 0.038 0.047 0.052

M15421(5) 0.113 0.088 0.167 0.063 0.071 0.075
M15421(7) 0.254 0.188 0.389 0.093 0.119 0.129

J02459(7) 1.899 1.294 2.494 0.392 0.619 0.634

BX842596(4) 3.869 2.475 5.096 1.665 1.091 1.119
BX842596(7) 24.82 15.11 28.92 2.913 5.955 6.104

4.3 Comparison Against Other Assemblers

Once we have studied our proposed algorithm and how the different alterna-
tive methods influence on its performance, we are going to compare its results
against other assemblers found in the la literature: a genetic algorithm (GA) [9],
a pattern matching algorithm (PMA) [10] and commercially available packages:
CAP3 [5] and Phrap [2]. We compare them in terms of the final number of con-
tigs assembled (all these methods use the same cutoff value). Table 4 gives a
summary of the results. When a solution with a single contig is achieved, all the
algorithms obtain the same solution.

Table 4. Best final number of contig for our assembler (using the best configuration)
and for other specialized systems. “-” symbol indicates that this information is not
provided by the corresponding paper.

PALS GA [9] PMA [10] CAP3 [5] Phrap [2]

X60189(4) 1 1 1 1 1
X60189(5) 1 1 1 1 1
X60189(6) 1 - 1 1 1
X60189(7) 1 1 1 1 1

M15421(5) 1 6 1 2 1
M15421(7) 1 1 2 2 2

J02459(7) 1 13 1 1 1

BX842596(4) 4 - 7 6 6
BX842596(7) 2 - 2 2 2

As it can be seen in Table 4, for X60189 instances (the easiest ones) all the
assemblers obtain the optimal number of contigs. However, when the instances
are harder, we can notice several differences in the quality of the solutions found
by the algorithms. We can conclude that our approach obtains better or similar
accuracy than the other methods. In fact, PALS outperforms the remaining tools
in two instances. In particular for the BX892596(4), our method represents a new
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state of the art, and it also achieves the optimum for M15421(7) that was only
found by one of the compared systems (Parson’s GA [9]).

We do not show execution times because, in general, they are not provided
by the authors, but, to give an approximate idea of them to the reader, we can
comment that the execution times of these methods range from tens of seconds
for the easiest instances to several hours for the hardest ones, while our approach
does not spend more than 30 seconds in any instance. However, we should also
notice that these tools return the consensus sequence, while PALS returns the
ordered layout and an additional step is required to obtain the final consensus
string. This final step includes several light operations like the construction of
the final DNA sequence from the ordered layout.

5 Conclusions

The DNA fragment assembly is a very complex problem in computational bi-
ology. Since the problem is NP-hard, the optimal solution is impossible to find
for real cases, except for very small problem instances. Hence, computational
techniques of affordable complexity such as heuristics are needed for it.

We have proposed a new problem-aware local search (PALS). Its key con-
tribution is the incorporation of information (an estimation) on the number of
contigs into the search mechanism. This feature has allowed us to design a fast
and accurate assembler which is competitive against current specialized assem-
blers. In fact, PALS represents the new state of the art for several complex
problem instances. We have also studied the influence of the configuration of
our approach. We have observed that the best setting for PALS is to start from
a random solution and to select the best movement found in each iteration.

In the future we plan to study our past metaheuristic assemblers augmented
with PALS to hopefully solve much larger instances accurately.
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Abstract. This paper describes hybrid algorithms based on artificial immune
systems, fuzzy inference systems and tabu search to solve the Protein Folding
Problem (PFP) in the 3D Hydrophobic-Polar model, which is a particular in-
stance of the Combinatorial String Folding Problem in a cubic lattice. The pro-
posed methodology aims at enhancing the Clonalg algorithm with a Fuzzy Aging
Operator and Weak and Intensive Affinity Maturation. The aging operator uses
a fuzzy system to decide which antibodies will be eliminated from the popula-
tion before the selection stage. The Intensive Maturation employs a Tabu Search
strategy. Penalty methods versus feasible search methods are also compared. The
proposed hybrid algorithms are tested on a set of standard benchmark instances
of PFP and the results attest the efficiency of the methodology.

1 Introduction

In the last few years, the use of hybrid methods inspired by Natural Computing [3]
has attracted the attention of many researchers, specially the systems in which two or
more methodologies are joined to enhance the final model. In this paper we try to im-
prove the performance of artificial immune systems, known as efficient mechanisms in
multi-modal search spaces, by means of local search processes performed during the
maturation phase. To maintain the population’s diversity and to avoid premature con-
vergence a fuzzy aging operator is also adopted. In this case a fuzzy inference system is
used to define the death probability of an antibody. So this natural hybrid system seems
to be suitable to solve complex combinatorial problems as the Protein Folding Problem
(PFP) considered here.

Proteins are polypeptide chains of amino acid residues. The primary structure of
a protein is defined as its linear sequence of amino acids. When left in appropriate
environmental conditions, this sequence folds itself, reaching a unique low-energy state.
The protein’s three-dimensional structure (also called tertiary structure) is determined
by this state, which is called the native conformation of the protein. The PFP can be
defined as the problem of determining the native conformation of a protein given its
primary structure.

Protein folding is a very complex process that involves biological, chemical and
physical concepts. Thus, computational methods developed to solve PFPs are generally
based on reduced models. Although these reduced models abstract the most relevant
features of the whole process, the resulting Protein Folding Problem is still a challeng-
ing task. In this paper the Hydrophobic-Polar model in the three-dimensional lattice
(3D HP) is adopted.

C. Cotta and J. van Hemert (Eds.): EvoCOP 2007, LNCS 4446, pp. 13–24, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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In this paper we developed different approaches based on Artificial Immune Sys-
tems [18], Fuzzy Inference Systems [16] and Tabu Search [10] to solve the Protein
Folding Problem. The goal here is to answer the following questions:

– How does the fuzzy aging operator with a weak affinity maturation influence the
performance of the Artificial Immune System?

– A penalty-based method could outperform a feasible search approach?
– What is the impact of using the tabu search as an intensive maturation process?

2 The Hydrophobic-Polar Model

Deciding the three-dimensional structure of a protein is fundamental to find out the
biological function of such protein. This knowledge may be essential to design new
drugs for some kinds of illnesses, to treat or prevent diseases caused by mistakes in the
folding process (cystic fibrosis, Alzheimer’s, and ”mad cow”, for example) [6], and to
develop biological polymers with specific material properties [17].

Due to the inherited complexity of Protein Folding Problems, simplified models have
become very popular. Among several options, the hydrophobic-polar (HP) model [13]
is one of the most studied and applied. In the HP model, the twenty amino acids that
compose the proteins are divided in two categories: Hydrophobic/Non-polar (H), and
Hydrophilic/Polar (P) residues. So, the protein’s primary structure can be represented
as a string whose elements are in the alphabet {H,P}+.

Conformations of an HP sequence are restricted to self avoiding walks on a lattice,
since two residues of a protein can not occupy the same position in the lattice space.
For the 2D HP model, a two-dimensional square lattice is typically used, while the 3D
HP model generally adopts a three-dimensional cubic lattice.

Every feasible conformation in the HP model is associated with a free energy level
which is proportional to the number of topological contacts between hydrophobic
residu-es that are not neighbors in the given sequence. More specifically, the free energy
of a certain conformation with η non-local hydrophobic contacts is -η.

The HP PFP can be formally defined as follows: given an HP sequence s = s1s2 · · ·
sn, we must find an energy-minimizing conformation of s, i.e., find c∗ ∈ C(s) such
that E(c∗) = min{E(c)|c ∈ C}, where C is the set of all possible conformations and
C(s) is the subset of all feasible (self avoiding) conformations for the sequence s [17].

The PFP in this model is known to be NP-hard [1] and is combinatorially equivalent
to folding a string of 0’s and 1’s so that the string forms a self-avoiding walk on the 3D
square lattice and the number of adjacent pairs of 1’s is maximized [14] [9].

3 Related Works

Most of the researches in PFP are based on the 2D HP model. Monte Carlo methods are
considered good algorithms for solving 2D HP PFP. An example of such methodology
is the Pruned Enriched Rosenbluth Method (PERM) [11]. Cutello, Nicosia and Pavone
applied an Artificial Immune System (AIS) with an aging operator and also achieved
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good results [8]. Another good algorithm is the Multimeme Algorithm which is capable
of solving the 2D HP Protein Folding Problem in different models [12].

More recent works have focused on the 3D HP model. Cotta proposed an Evolu-
tionary Algorithm associated with a Backtracking method [7]. The author compared
the results obtained from relative representations with the ones produced by abso-
lute representations. He also compared penalty-based, repair-based, and feasible space
approaches. In [17] an Ant Colony Optimization was applied to the 3D HP Protein
Folding Problem. The results obtained were favorably compared with state-of-the-art
methods. A parallel ACO approach was used in [5]. According to the authors, the par-
allel approach outperforms single colony implementations both in terms of CPU time
and quality of the results. Cutello et al. [9] used an Immune Algorithm based on clonal
selection principle with aging operator and memory B cells. The results were compared
with those obtained in [7]. In [2] the Tabu Search strategy is applied as the sole method
for solving the Protein Folding Problem in the 3D HP model. The results obtained en-
courages the use of the Tabu Search as a complementary strategy in other approaches.

4 The Proposed Artificial Immune Systems

The algorithms proposed in this paper are based on the Clonalg algorithm [4]. The
Clonalg algorithm works with a population of candidate solutions (antibodies), com-
posed of a subset of memory cells (best ones) and a subset of other good individuals. At
each generation the n best individuals of the population are selected based on their affin-
ity measures (how good they are as solutions to the problem). The selected individuals
are cloned, giving rise to a temporary population of clones. The clones are submitted
to an hypermutation operator, whose rate is proportional (or inversely proportional) to
the affinity between the antibody and the antigen (the problem to be solved). From this
process a maturated antibody population is generated. Some individuals of this tempo-
rary population are selected to be memory cells or to be part of the next population.
This whole process is repeated until a termination condition is achieved [4]. In the 3D
HP Protein Folding Problem the primary representation of the proteins to fold are the
antigens and the antibodies are possible conformations in the lattice.

In this work a Fuzzy Aging Operator (which is responsible for eliminating antibodies
that are sentenced to death according to the fuzzy inference system), a Weak Affinity
Maturation stage (that tries to improve the affinity of the antibodies marked to die by the
Fuzzy Aging Operator), and an Intensive Affinity Maturation (that uses the Tabu Search
strategy to improve the affinity of the antibodies in the population) are incorporated to
the standard Clonalg algorithm. The general form of our algorithms can be summarized
by Pseudo-Code 1.

The initial population (generation 0) is randomly generated in two different ways:
in the first case only feasible antibodies are possible (i.e., antibodies that represent self
avoiding walks of the corresponding sequence in a certain lattice), while the second
case accepts infeasible antibodies.

The antibodies are represented using internal coordinates. The internal coordinates
depend on the particular lattice topology considered. The representation of the antibod-
ies is better explained in Subsection 4.1.
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Immune Algorithm(PROTsize,POPlength,dup,MAXage,HYPrate)
generations← 0;
POP = Initialization();
Evaluate(POP);
while (not Terminal_Condition()) do

POPc← Cloning(POP,dup);
POPh← Hypermutation(POPc,HYPrate);
Evaluate(POPh);
POPm← Hypermacromutation(POPc);
Evaluate(POPm);
DEATH_POP, POPa← FuzzyAging(POP,POPh,POPm);
POPa← WeakMaturation(DEATH_POP);
POP← Selection(POPa);
generations← generations+1;
if (Num_Evaliations % Maturation_Evaluations==0)

POP← IntensiveMaturation(POP);
end while

Pseudo-Code 1

After being initialized every antibody is evaluated. The affinity of an antibody repre-
sents the number of non-local hydrophobic contacts. So, finding the minimal energy of
a conformation is transformed into the equivalent problem of maximizing the number
of non-local hydrophobic contacts. This is done by the Evaluate function, which re-
ceives a population of antibodies as a parameter. The evaluation function calculates the
number of non-local hydrophobic contacts and the number of collisions.

The Terminal Condition is a function that returns true whenever the evolutionary
process must be stopped. In this paper the stop criterium is defined as the maximum
number of evaluations.

The cloning operator produces some copies (clones) of each antibody. This operator
generates an intermediate population of clones (POPc) with size POPlength ∗ dup,
where POPlength is the size of the initial population and dup is the parameter defin-
ing the number of copies of each antibody. During the clonal expansion, every cloned
antibody inherits the age of its parent.

During the evolutionary process two kinds of hypermutation operators are applied:
inversely proportional hypermutation (Hypermutation) and Hypermacromutation. The
Hypermutation function receives two parameters - the population of clones and the
hypermutation rate (HY Prate) - and returns an intermediate population (POPh).

In the Hypermutation operator, Mmax (the maximum number of mutations allowed)
is inversely proportional to each antibody´s affinity value, and is determined by Eq. 1.

Mmax(A(x)) =
{

(1 + E∗
A(x) ) ∗ α, if A(x) > 0

(1 + E∗) ∗ α + α, if A(x) = 0
(1)

where α = HYPrate * PROTsize and A(x) is the affinity value of the individual x and
E∗ is the best known energy value.

The Hypermacromutation function receives just the population of clones and also
returns an intermediate population (POPm). The hypermacromutation tries to mutate
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each antibody, always generating self avoiding conformations. The maximum number
of mutations, that is independent from the affinity of the antibody being hypermacro-
mutated, can be defined as Mmax = j− i + 1, where i and j are two random generated
integers such that (i+1) ≤ j ≤ PROTsize. The hypermacromutation operator randomly
selects the perturbation direction, either from position i to position j (left to right) or
from position j to position i (right to left).

To avoid premature convergence and better explore the search space, we adopted a
mechanism to define the actual number of mutations M ≤Mmax to be applied to an an-
tibody. This mechanism, named First Constructive Mutation (FCM), was first described
by Cutello et. al. in [9]. The FCM, associated with hypermutation and hypermacromuta-
tion operators used here can be described as follows: if the ith mutation in the inversely
proportional hypermutation or hypermacromutation gives rise to a feasible individual,
the mutation process stops and another process is initiated in the next antibody. There-
fore, the effective number of mutations M that occur in an antibody is limited to the range
[1 , Mmax], and M is defined as the first mutation that produces a feasible individual. If
after Mmax mutations, no feasible solution is found, the mutated antibody is discarded.

It is important to point out that neither the Hypermutation nor the Hypermacromuta-
tion generates infeasible antibodies (even when the initial population allows infeasible
individuals), or permits redundancy in the antibodies receptors. This last restriction im-
poses that every individual in a population must be different from the others.

An important contribution of this paper regards the analysis of the aging function
applied to the antibodies. This function is responsible for determining which antibody
(from populations POP , POPh, and POPm) should die, must be treated by the Weak
Affinity Maturation stage or will be available to take part in the next population. Sec-
tion 4.2 details the principles of the fuzzy aging operator.

DEATH POP is formed by antibodies that were sentenced to death while POPa is
formed by the individuals that survived after the aging operator. From this population,
the POPlength best individuals are chosen (by the Selection function) to compose the
population of the next generation. An individual (A) is considered better then another
(B) if one of three conditions is satisfied: both individuals are feasible and A has a
higher number of non-local hydrophobic contacts, or A is feasible and B is not, or
both individuals are infeasible and A has a lower number of collisions. If less than
POPlength individuals survive, new individuals are randomly generated to complete
the new population (in the same way as the initial population is generated, i.e., with
possible unfeasible individuals in the case of penalty-method).

Finally, at every Maturation Evaluations evaluations the Intensive Affinity Matura-
tion stage based on tabu search is applied to all antibodies of the population. This stage
is better described in Section 4.3.

4.1 Representation

As previously discussed, a protein conformation in the HP model is a self avoiding walk
of the corresponding sequence in a certain lattice. Then each individual antibody must
represent such a walk. This is typically done by using internal coordinates. The internal
coordinates depend on the particular lattice topology considered. In this work we used
a cubic lattice representation, where each location has at most six neighbors [7].
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a) b)

Fig. 1. (a) Absolute moves: the black cube represents the current location; (b) Relative moves:
the black cubes represent the current and previous locations

The two major adopted schemes for representing internal movements are
(see Figure 1): Absolute and Relative. In the Absolute representation an absolute ref-
erence system is assumed and movements are specified accordingly to it. In the cubic
lattice a conformation c is represented as a string of size Protsize - 1 over the alphabet
{North, South, East, West, Up, Down}. The size of the search space is proportional to
the protein’s length minus one because the first residue is fixed (this is also adopted by
the Relative representation) [19]. The Relative representation has not a fixed reference
system: the coordinate system depends on the position of current and previous residues.
For the cubic lattice, a conformation c is represented as a string of size Protsize - 1
over the alphabet {Forward, Turn Up, Turn Down, Turn Left, Turn Right} [15].

In this work, the absolute representation was adopted, because previous researches
compared both representations and obtained better results with the absolute representa-
tion [7] [9].

4.2 Fuzzy Aging Operator

The fuzzy aging operator was developed to avoid premature convergence. This operator
contributes to preserve the diversity of the population and to guide the algorithm in the
direction of good solutions (as can be seen in Section 5).

The Fuzzy Aging Operator adopted here is inspired by the aging operator proposed
by [9] but with a fuzzy inference system used to decide when an antibody should die or
be treated. In his work [9], Cutello imposed that every individual had an equal opportu-
nity to explore the search space. This aging operator entirely depended on antibodies’s
age, regardless of its affinity. Although we think equality is important, we also believe
that individuals with higher affinity levels must have better opportunities to remain in
the population (an idea that is in accordance with the ”survival of the fittest” principle).
To accomplish this, we design an aging operator which considers the age, the affinity
and the diversity (regarding the remaining individuals of the population) of each anti-
body. This operator is based on the following assumptions: there must exist good indi-
viduals in the population (elitist principle), the diversity must be high (to avoid being
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Table 1. Fuzzy Rules used on the Fuzzy Aging Operator

Y and L and L→M Y and L and L→ B Y and L and L→ VB MA and M and L→ L
MA and M and L→M MA and M and L→ B O and H and L→ VL O and H and L→ L

O and H and L→ H Y and L and M→ L Y and L and M→M Y and L and M→ VH
MA and M and M→ VL MA and M and M→ L MA and M and M→ H O and H and M→VL

O and H and M→ L O and H and M→ VL Y and L and H→M Y and L and H→M
Y and L and H→M MA and M and H→M MA and M and H→M MA and M and H→M
O and H and H→M O and H and H→M O and H and H→M

trapped in local minima and therefore premature convergence), and very old individuals
must die (to enrich the diversity of population).

So, a Fuzzy Inference System (FIS) of Mamdani type [16] is being proposed in this
paper to define the death probability of an antibody. Such FIS has three input variables:
age, affinity and diversity; and one output variable: the death probability. In the adopted
knowledge base, linguistic variables have the following set of linguistic terms: T(age) =
{Young, Middle Age, Old}; T(affinity) = {Low, Medium, High}; T(diversity) = {Low,
Medium, High}; T(death probability) = {Very Low, Low, Medium, High, Very High}.
The diversity and affinity variables are normalized in the range [0,1] in a dynamic way,
i.e., it is performed at every generation. The FIS output is used to determine if an antibody
will survive, must die or is in death eminence and thus must be treated by the Weak
Affinity Maturation. Table 1 and Figure 2 illustrate the fuzzy system knowledge base.

4.3 Affinity Maturation Stages

The proposed algorithms have two possible affinity maturation stages: a Weak Affin-
ity Maturation and an Intensive Affinity Maturation. Both stages tries to improve the
affinity of an antibody by applying a local search.

Weak Affinity Maturation. This stage is used to improve the affinity of antibodies
whose death is imminent.

First of all, Weak Affinity Maturation tries to improve the affinity of an antibody by a
scheme analogous to the inversely proportional hypermutation (with the same rate, i.e.,
both operators has the same Mmax for each individual), but with some few differences:
after the position that is being mutated is defined, the Weak Affinity Maturation tries
all the possible new directions (other movements in the lattice space) for this position
before proceeding to the next one. Moreover, the process stops only when the affin-
ity of the generated antibody is better than the original one or the maximum number
of attempts is achieved. If the first phase of the Weak Affinity Maturation described
above is unsuccessful, we also apply another kind of search to this antibody that can
be considered a modification of the hypermacromutation operator. At this phase all the
possible new directions are tested for every position in the range [i, j] and the process
stops only when the affinity of the generated antibody is better than the original one
or all positions in the range are tested. After the execution of both phases of the Weak
Affinity Maturation, the antibody dies if it is incapable of having its affinity improved.
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a) b)

c) d)

Fig. 2. Membership Functions: a) Age b) Affinity c) Diversity d) Death Possibility

Although the local search mechanism employed by the Weak Affinity Maturation
stage is target at improving the quality of the antibodies it´s also responsible for pre-
serving the population´s diversity.

Intensive Affinity Maturation. In order to further improve the quality of the antibod-
ies generated by the proposed AISs, an Intensive Affinity Maturation stage is proposed.
This stage performs an intensification process and contrasts with the exploratory nature
of the hypermutation and hypermacromutation operators.

In this work, Tabu Search [10] is employed as the local search procedure associated
with the Intensive Affinity Maturation and is motivated by the results obtained in [2]. We
used just one kind of move: one position mutation (this allows for a smoother progress
of the search). The aspiration criteria used is the best ever aspiration criteria, i.e., if a
move results in the best individual find so far it´s chosen even if such a move is tabu.

5 Experiments and Results

In this section four variations of the Clonalg [4] algorithm are tested. The features con-
sidered here are: Fuzzy Aging Operator, Infeasible Antibodies, Weak Affinity Matura-
tion and Intensive Affinity Maturation.

ClonalgI is the standard Clonalg algorithm while ClonalgII is ClonalgI enhanced with
the Fuzzy Aging Operator associated with the Weak Affinity Maturation. ClonalgIII
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differs from ClonalgII because it allows for the generation of feasible and infeasible
antibodies during the initialization and after the aging operator while ClonalgII only per-
mits feasible ones. ClonalgIV enhances ClonalgIII with the use of an Intensive Affinity
Maturation process based on Tabu Search.

The algorithms were executed 50 independent times with the following set of pa-
rameters (when applicable): 10 individual in the population, duplication rate equals to
4, mutation rate equals to 0.6, tabu tenure equals to 20, 200 Tabu Search Iterations and
a termination criterion of 105 evaluations. This set of parameters were experimentally
determined. It’s important to note that the algorithms are not very sensitive to the pop-
ulation size, duplication rate and mutation rate. Similar results are obtained with pop-
ulation sizes varying from 10 to 40, for values greater than 40 and smaller than 10 the
quality of the results starts to degenerate. We chose a population size of 10 to accelerate
the execution time. Any duplication rate between 2 and 4 are good, but the algorithms
run faster with a duplication rate of 4. Mutation rates varying from 0.4 to 0.6 gives sim-
ilar results, but we chose the value 0.6 due to a slight improvement in the quality of the
result without degrading the time performance of the algorithms. Mutation rate values
outside this range also degenerates the quality of the results.

To validate our methodology, we compared the proposed algorithms with other evo-
lutionary approaches found in literature [7][9] in the standard benchmark of the 3D
HP Protein Folding Problem for 7 different protein sizes (see http://www.cs.sandia.gov/
tech reports/compbio/tortilla-hp-benchmarks.html for more details). The results are
summarized on Table 2 in terms of the best found solution (Best), mean, standard devi-
ation (σ) and time (in minutes).

Considering the mean values, all the hybrid systems (ClonalgII, ClonalgIII and Clon-
algIV) obtained satisfactory results. In terms of best values, all the proposed approaches
found at least equal values when compared with the other evolutionary techniques. In
both cases, the best results were obtained by the ClonalgIV. This hybrid system which

Table 2. Results obtained by the proposed algorithms compared to methods of the literature (E∗

is the best known values reported on the literature)

Benchmark Instances Benchmark Instances

N. 1 2 3 4 5 6 7 1 2 3 4 5 6 7
Size 20 24 25 36 48 50 60 20 24 25 36 48 50 60
E∗ -11 -13 -9 -18 -29 -26 -49 -11 -13 -9 -18 -29 -26 -49

Backtracking-EA [7] Aging-AIS [9]

Best -11 -13 -9 -18 -25 -23 -39 -11 -13 -9 -18 -29 -23 -41
Mean -10.31 -10.90 -7.98 -14.38 -20.80 -20.20 -34.18 -11 -13 -9 -16.76 -25.16 -22.60 -39.28

σ 0 0.36 0 0.88 1.17 1.15 2.00 0 0 0 1.02 0.45 0.40 0.24
T(min) 0.36 0.46 0.5 0.89 2.09 2.34 10.05 0.98 1.59 1.28 2.75 5.83 11.17 13.83

ClonalgI ClonalgII

Best -11 -13 -9 -18 -29 -27 -48 -11 -13 -9 -18 -29 -30 -47
Mean -10.40 -11.26 -8.06 -15.04 -24.20 -23.08 -42.65 -11 -12.68 -8.98 -17.20 -26.38 -25.04 -43.04

σ 0.57 0.90 0.87 1.37 2.22 2.05 2.74 0 0.62 0.14 0.90 1.10 1.29 1.29
T(min) 1.43 1.63 1.58 2.24 4.05 4.31 10.34 0.29 0.40 0.43 0.69 2.20 3.96 7.32

ClonalgIII ClonalgIV

Best -11 -13 -9 -18 -30 -28 -47 -11 -13 -9 -18 -30 -30 -51
Mean -11 -12.9 9 -17.28 -27.02 -25.06 -44.02 -11 -12.98 -9 -17.76 -28.49 -26.36 -46.16

σ 0 0.36 0 0.88 1.17 1.15 2.00 0 0.14 0 0.59 0.92 1.01 1.49
T(min) 0.36 0.46 0.5 0.89 2.09 2.34 10.05 0.98 1.59 1.28 2.75 5.83 11.17 13.83
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a)

b)

Fig. 3. Graphics of performance: a) Mean/Best(E∗) ratio for each protein b) Mean of the time for
one execution of each algorithm to each protein

adopts the fuzzy aging and the intensive maturation process was able to obtain new
minimal energy value (E∗

new - bold faced in Table 2) for protein instances 5, 6 and 7.
Figure 3 shows the behavior of the mean, calculated as a percentage of the best

known energy value described in literature (E∗), and time consuming of the proposed
algorithms (both relative to the size of the benchmark instances).

Based on a ranksum test with 95% degree of confiability it is possible to conclude
that the quality of the results obtained by ClonalgII are better than those obtained by
ClonalgI (Figure 3 a)). But the time spent in the search is almost the double of the time
spent by ClonalgI (Figure 3 b)). So it´s reasonable to conclude that the Fuzzy Aging
Operator in association with a Weak Affinity Maturation stage is capable of improving
the quality of the results by consuming more computational resources. When comparing
ClonalgII and III we conclude that although both algorithms achieved similar results
in terms of energy (best and mean) values, ClonalgIII is faster (Figure 3 b)). So the
use of infeasible individuals in the population is beneficial to the overall performance.
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ClonalgIV achieved the best results among all three proposed hybrid algorithms with
95% degree of confiability according to the ranksum test, without requiring excessive
computational effort.

ClonalgIV is capable of finding best energy values equal or better than those obtained
by a Genetic Algorithm with Backtracking [7] and a Immune Algorithm with Aging
Operator [9]. In relation to the mean energy values, ClonalgIV has better values than
those obtained in [7] for all instances and is able to produce better results than those
presented in [9] for four instances (4, 5, 6 and 7) and worse results only for the second
instance.

6 Conclusion

In this paper we proposed three hybrid variations of the Clonalg algorithm. This varia-
tions introduced the use of the Fuzzy Aging Operator, the Weak Affinity Maturation and
the Intensive Affinity Maturation of the antibodies. The use of infeasible individuals on
the population did not degenerate the performance besides it improved the computa-
tional time. The Fuzzy Aging Operator - in conjunction with the Weak Affinity Matu-
ration - enhanced the stability of the standard Clonalg algorithm. Finally, the use of the
Intensive Affinity Maturation - implemented as a Tabu Search - was able to improve
the best and mean energy values and decreased the standard deviation. Clonalg IV - the
best hybrid algorithm implemented - allowed us to find energy minima not found by
other evolutionary algorithm described in literature.

In future works we intend to analyze the behavior of the proposed algorithms in
other combinatorial problems and test the efficiency of other local search strategies as
an alternative to the Tabu Search in the Intensive Affinity Maturation Stage.
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Abstract. We work with a project scheduling problem subject to temporal con-
straints where the resource availability costs have to be minimised. As an exten-
sion of the more well known Resource Investment Problem, which considers 
only time-independent costs, this problem includes both time-independent fixed 
costs and time-dependent variable renting costs for the resources. Consequently, 
in addition to projects where all resources are bought, we can deal with projects 
where resources are rented. Based on a new codification of a solution for pro-
ject scheduling, we develop a Genetic Algorithm capable of outperforming a 
branch-and-bound procedure that exists for the problem. 

Keywords: Project scheduling – Temporal constraints – Resource costs – 
Metaheuristic algorithms – Genetic Algorithms. 

1   Introduction 

Resource-constrained project scheduling is concerned with the allocation of time in-
tervals to the processing of activities. The execution of activities requires the use of 
scarce resources. A classical problem in this field is the resource-constrained project 
scheduling problem RCPSP (cf. e.g. [3] or [6]) where the objective is to minimise the 
makespan. The scarcity of resources is given by prescribed limited capacities which 
must not be exceeded. The RCPSP belongs to the class of problems with regular ob-
jective functions. Most of the work in project scheduling has focused on this type of 
measure of performance. A regular measure of performance is a nondecreasing func-
tion of the activity completion times (in the case of a minimization problem). Apart 
from the minimisation of the makespan, other examples from regular objective func-
tions are the minimization of the mean flowtime, the mean tardiness and the percent-
age of tardy jobs. In recent years scheduling problems with nonregular measures of 
performance have gained increasing attention (cf. [16]). A nonregular measure of per-
formance is a measure for which the above definition does not hold. Two popular 
nonregular measures of performance in the literature are the maximization of the net 
present value (npv) of the project (cf. [12]) and the minimization of the weighted 
earliness–tardiness penalty costs of the activities in a project (cf. [16]). In both of 
these problems, the start times of activities is a key factor in the objective function 
and the resources are considered, as in the RCPSP, in restrictions. Nevertheless, in 
some projects the cost of resources is a key factor in itself, even more important than 
the project length, which should “only” not exceed a certain prefixed limit. One of 
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these problems is the Resource Levelling Problem, RLP. The goal of this problem is 
to approximately use the same amount of the different types of resource throughout 
the project, consult e.g. [12] or [2]. Another problem with a resource-based objective 
function is the resource investment problem RIP, where the use of resources is associ-
ated with certain costs which have to be minimised (see e.g. [3] or [13]). Problems of 
scarce time which have been dealt with in project scheduling literature commonly as-
sume that the costs of making resources available are independent of time. As a con-
sequence, to carry out a project which requires a capacity of x units of a resource, no 
matter if these x units are used for only one time unit or throughout the whole project 
execution, the resource availability costs are the same. Hence, making resource units 
available means buying them. For many real-life projects, however, the use of re-
sources is associated with time-dependent costs, e.g. for heavy machinery or man-
power in civil engineering. Moreover, the consideration of time-dependent costs 
would enable us to model the renting of resources (for resource acquisition via buying 
and renting see also [1]). That is why the resource renting problem RRP has been 
proposed (see [14]) where, besides time-independent fixed renting costs, time-
dependent variable renting costs are given for the resources. 

In that paper it was clear that exact methods are not able to solve medium or large 
instances. The only heuristic algorithm developed for the RRP is a priority rule in 
[11]. This paper tries to close this gap by creating a multi-pass algorithm based on 
that priority rule and especially by developing a metaheuristic algorithm. The devel-
oped GA uses a new crossover based on a totally new codification for project sched-
uling under scarce resources. It also incorporates a local search and a diversification 
which improve its performance. 

In the next section, we introduce the basic terminology of the optimization prob-
lem. Section 3 is concerned with priority rules for the problem and a multi-pass algo-
rithm created with them. In Section 4, the developed genetic algorithm is described, 
together with some extensions that improve its performance. Finally, computational 
experience with the proposed procedures is presented in Section 5. 

2   Preliminaries 

2.1   Model of the Problem 

In this section we follow [14] and [11]. Let V = {0, 1,.., n} be the set of activities of 
the project, which coincides with the node set of a corresponding activity-on-node 
project network. The dummy activities 0 and n+1 represent the beginning and termi-
nation of the project, respectively. Let pj ∈ Z≥0 be the duration (or processing time) 
and Sj ∈ Z≥0 be the start time of activity j where S0 = 0. Then Sn+1 represents the pro-
ject duration (or makespan). We assume that there is a prescribed maximum project 

duration d  ∈ Z≥0, i.e. we have the constraint Sn+1 ≤ d . If there is a given minimum 
time lag dij

min ∈ Z≥0 between the start of two different activities i and j, i.e., Sj – Si ≥ di-

j
min, we introduce an arc <i, j> in the project network with weight δij = dij

min. If there is 
a given maximum time lag dij

max ∈ Z≥0 between the start of activities i and j, i.e., Sj – 
Si ≤ dij

max, we introduce an arc <j, i> with weight δij = -dij
max. The arc set of the project 

network is denoted by E. 
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The processing of the project activities requires renewable resources. Let R be the 
set of resources and let rik ∈ Z≥0 (i ∈ V, k ∈ R) be the amount of resource k which is 
used by activity i in interval [Si,Si + pi[. The usage of resources incurs fixed and vari-
able costs. For each unit of resource k ∈ R rented, we have a fixed renting costs  

f

kc  ∈ Z≥0 arising when bringing the unit into service. In practice, f

kc  often represents 

a transportation or delivery cost for the resource unit being rented. The variable rent-

ing costs of v
kc ∈ Z≥0 refers to one unit of resource k and one unit of time for which 

the resource unit is rented. Accordingly, the provision of one unit of resource k for a 

time interval of t time units length leads to fixed costs of f

kc  and to variable costs of 

t v
kc . We assume that f

kc  > 0 or v
kc  > 0 for all resources k ∈ R. 

Given a schedule S, let A(S,t) := {i ∈ V | Si ≤ t < Si + pi} be the set of activities in 
progress at time t and let ∑

∈
=

),(

   :) ,(
tSAi

ikk rtSr be the amount of resource k required at 

time t. Without loss of generality we assume the points in time where the capacities of 
the resources k ∈ R can be increased or decreased to be integral. We have to decide on 
how many units of resource k ∈ R are to be rented at each point in time t ∈ [0, d ]. 
Obviously, at some points in time t it may be optimal to rent more units than used (i.e. 
more than rk(S,t) units) in order to reduce the fixed cost. Given schedule S, let  
ϕk(S,t) (or ϕkt for short) be the amount of resource k rented at time t ∈ [0, d ]. Func-
tion ϕk(S,.) indicates at which points in time resources are allocated or released and 
thus how long resources are rented. We can restrict ourselves to step functions ϕk(S,.) 
with a finite number of jump discontinuities. Besides, we assume that ϕk(S,.) are con-
tinuous from the right. Function ϕ(S,.) := (ϕk(S,.))k∈R is called a renting policy for a 

schedule S. Given renting policy ϕk(S,.), ∫
dv

k dttSc
0 k ),( ϕ  represents the total variable 

renting cost for resource k and planning horizon d . Let Jk be the finite set of jump 

discontinuities of function ϕk(S,.) on interval [0, d ] and τmin be the smallest of those 
jump points. For t ∈ Jk\{τmin}, let τt := max{τ ∈ Jk | τ < t}  be the largest jump point of 
function ϕk(S,.) less than t and for t ∈ Jk, let  

⎩
⎨
⎧ >−

=Δ
+

+

otherwise ),,(

   if   ,)],(),([
:

minτϕ
ϕϕϕ

S

τtτStS

k

mintkk
kt  (1) 

be the increase in the amount or resource k rented at time t. then the total fixed renting 

cost for resource k equals ∑ ∈
+Δ

kJt

f
kc ktϕ . 

Renting policy ϕ(S,.) is called feasible with respect to schedule S if ϕk(S,t) ≥ rk(S,t) 
holds for all k ∈ R and t ∈ [0, d ]. Given schedule S, renting policy ϕ(S,.) is called op-
timal if it is feasible with respect to S and the corresponding total renting cost 

∑ ∑∫
∈

∈
+Δ+

Rk
Jt

f
k

dv
k

k
cdttSc ]),( [ kt0 k ϕϕ  is minimum. 

The objective function f of the resource renting problem represents the total renting 
cost belonging to an optimal renting policy for schedule S and reads as follows 

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



28 F. Ballestín 

∑ ∑∫
∈

∈
+

≥ ⎥⎦
⎤

⎢⎣
⎡ Δ+=

Rk
Jt

f
k

dv
kSrS

k
cdttScSf kt0 k,.)(,.)( ),(      min     :  )(

kk
ϕϕϕ  (2) 

Let ϕk
*(S,.) be an optimal renting policy for schedule S and k ∈ R. The resource rent-

ing problem subject to temporal constraints RRP/max consists of finding a schedule S 
which satisfies and minimises objective function f. This problem is denoted 
PS∞|temp, d |ΣΣck

vϕkt + ck
fΔ+ϕkt (cf. [11]) and is NP-hard as an extension of the 

RIP/max (cf. [14]). 
It is easy to come up with a renting policy for a feasible schedule S, e.g. ϕk(S,t) = 

rk(S,t) for all k ∈ R and t ∈ [0, d ]. However, it is not straightforward to calculate the 
optimal renting for S. In [14] it is explained how to create such a renting policy, an al-
gorithm which has O(n max(log n, |R|)). A similar algorithm to calculate the optimal 
renting policy is given in [11]. 

2.2   Candidates for Optimal Solution 

In [11], several types of schedules are studied. One of the results states that it is 
enough to search in the space of quasistable schedules in order to find an optimal so-
lution for the RRP. This means that, when we schedule an activity i in a partial sched-
ule, we only have to look at certain points in time t: (a) we can begin i at the end of a 
scheduled activity j, (b) we can end i at the beginning of a scheduled activity j, or (c) 
we can begin i at ESi or at LSi. ESi (LSi) denotes the earliest (latest) start time where 
activity i can be scheduled. Throughout the paper we will only take into account these 
points at time t when we schedule an activity, but we will not mention it again. 

2.3   Test Bed 

The tests are based upon a test bed including 3 different sets, UBO10c, UBO20c and 
UBO50c, with 90 instances with 10, 20 and 50 activities, respectively. The instances 
have been generated using the problem generator ProGen/max by [10]. The random 
construction of problem instances by ProGen/max can be controlled by several pa-
rameters as the problem size n and |R|, the order strength OS of network N as a meas-
ure of parallelism, and the resource factor RF as the average fraction of the number of 
resources used per activity. In addition, the cost quotient CQ denotes the ratio of vari-

able renting costs and fixed renting costs, i.e. v
kc  = CQ f

kc (k ∈ R). The test set in-

cludes 1800 problem instances for each combination of 10, 20 and 50 real activities 
and 1, 3, and 5 resources. The settings for the order strength, the resource factor, the 
cost quotient, and the project deadline have been chosen to be OS ∈ {0.25, 0.5, 0.75}, 
RF = 1, CQ ∈ {0, 0.1, 0.2, 0.5, 1}, and d  ∈ {d0,n+1, 1.1 d0,n+1, 1.25 d0,n+1, 1.5 d0,n+1,}, 
where d0,n+1 denotes the length of a longest path from activity 0 to activity n+1 in V. 
Note that the settings for the project deadline ensure that each generated RRP/max-
instance possesses a feasible solution. The sets UBO10c and UBO20c were used in 
[14] and we will compare our best algorithms with the (truncated) B&B from Nübel, 
B&BN, in these sets. We will use UBO50c in order to compare the different heuristic al-
gorithms we will develop. The quality of an algorithm will be measured by its average 
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deviation with respect to a lower bound calculated by B&BN at its first iteration. All re-
sults refer to a Pentium personal computer with 1.4GHz clock pulse and 512MB RAM. 

3   Priority Rules and Multi-pass Algorithms 

3.1   Priority Rules 

In [11], priority rules are described for PS∞|temp, d |f. They build a possible schedule 
in n steps, at each step an activity is selected and is scheduled locally optimal. The 
combined priority rule suggested for the RRP is MPA-GRR, where MPA is minimum 
parallelism first and GRR greatest resource requirements first. The second rule is used 
as a tie-breaking rule. We have tested this combination against the combination MST-
GRR, with MST = minimum slack time (LSh – ESh). We have also included the ran-
dom rule (RAN), where an unscheduled random activity is chosen at each iteration. 
The MPA-GRR rule (44.04% on average) outperforms RAN (46.12% on average), 
but the best combination is MST-GRR, which obtains 40.15% on average.  

3.2   Multi-pass Algorithms 

One can create a multi-pass algorithm based on a priority rule by introducing ran-
domness into the procedure. This is done e.g. in the RCPSP (cf. [9]) and the outcome 
can be used to measure the quality of a more complicated heuristic. We are going to 
evaluate three methods of introducing randomness: MP1, where only the selection of 
activities is biased; MP2, where only the schedule of an activity is biased. Each possi-
ble point in time to schedule activity i is assigned a probability according to the  
increase in the objective function obtained if i is scheduled at t; MP3, where both se-
lections are biased. The rule employed in the three algorithms is the one with the best 
results in the previous section, MST-GRR. 

In all the cases we use the regret-based biased random sampling (cf. [4]) and we 
impose a time limit of 5 seconds. The results say that MP1, the multi-pass algorithm 
where only the selection of activities is biased, is clearly the best (30.41% on aver-
age). MP2 and MP3 obtain an average of 34.06% and 34.73%, respectively. 

3.3   Local Search 

In the priority rules and MP1, each activity is scheduled locally optimal at each step. 
However, this optimality is obviously lost when other activities are scheduled. A 
natural way of improving a schedule obtained by a priority rule is to schedule an ac-
tivity locally optimal, fixing the rest of the activities. We use this property to create a 
Local Search and an Improvement Procedure. The first one (LS) unschedules and 
schedules activities locally optimal until a local optimum is obtained. LS will be used 
with MP1. The second one (IP) is a faster version where each activity is only chosen 
and rescheduled once (in a random manner). It will be used with the multi-pass algo-
rithms and the metaheuristic. 

In order to test the improvement procedure we have added it to the priority rules 
and multi-pass algorithm explained in the previous sections. We have observed that 
the algorithms with IP outperform those without it. Bear in mind that we impose the 
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same time limit on multi-pass algorithms with and without IP, whereas the priority 
rules with IP need more time than without it (from 0.0058 to 0.0086 seconds if we 
consider the average of all priority rules without and with IP). It is interesting to note 
that the three multi-pass algorithms + IP obtain approximately the same results, 
29.42%, 29.48% and 29.85% respectively. 

4   Genetic Algorithm 

In this section we describe the elements of the metaheuristic developed for the 
RRP/max.  Introduced by [7], GAs serve as a heuristic meta strategy to solve hard op-
timization problems. Following the basic principles of biological evolution, they es-
sentially recombine existing solutions to obtain new ones. The goal is to successively 
produce better solutions by selecting the better ones of the existing solutions more 
frequently for recombination. For an introduction into GAs, we refer to [5]. 

4.1   Codification of a Solution 

One of the most important aspects for a genetic algorithm is the codification and de-
coder used. In our problem we cannot use the usual ones that are employed in many 
project scheduling problems, for example the activity list and the Serial or Parallel 
Schedule Generation Scheme in the RCPSP (cf. [9]). The reason that lies behind this is 
that we do not look for active schedules, a set which always contains an optimal solu-
tion for regular objective function (cf. [15]), but for quasistable schedules. We have de-
cided to codify each solution S through a set for each activity i ∈ V, before(i,S) = {j ∈ V 
/ Sj + dj = Si}. That is, before(i,S) is the set of activities that finish exactly when i begins. 
We also need a set for the schedule S, namely framework(S), with framework (S) = 
{i ∈ V / Si = d0i or Si = -di0}, where dij denotes the length of the longest path between ac-
tivities i and j if we introduce the arc <n+1, 0> in the original network with weight  
δn+1,0 = - d . To calculate these sets while building a schedule is very straightforward.  

4.2   Crossover(M,F) 

Another essential part of a genetic algorithm is the crossover operator. Usually, a 
good crossover operator will be the one capable of transferring (some of) the good 
qualities from the parents to the children and which can combine them if possible. 

In our case, in a schedule with a good objective function there are few points in 
time where resources have to be newly rented. On the contrary, a bad schedule will 
have great oscillations in the number of consumed resource units. If a schedule is of 
good quality it will be then because the order in which activities is scheduled is cor-
rect. Note that it is not only necessary that an activity j ends after an activity i, it is 
important that j ends exactly when i finishes. We have developed a crossover operator 
that tries to schedule in the children one after the other activities that are scheduled 
one after the other in the mother M and/or the father F. The pseudo-code for the op-
erator is given below. 

Specifically, in order to obtain the daughter D from M and F, we first fix some ac-
tivities, namely we schedule the activities in framework(M) in the same interval as in 
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M. Afterwards we perform as many iterations as necessary until all activities have 
been scheduled, where we select and schedule one activity at each iteration. Sets C 
and C  contain, at each point in time, the scheduled and unscheduled activities respec-
tively. Two other sets are essential for the crossover operator, Eleg1 and Eleg2. Both 
of them must be recalculated at each iteration and are subsets of C . Eleg1 contains 
the unscheduled activities i that can be scheduled at that iteration right after a sched-
uled activity j. However, i must be scheduled right after j in M and in F. Eleg1 also 
contains the unscheduled activities i that can be scheduled at that iteration right before 
a scheduled activity j. Activity i must be then scheduled right before j in M and in F. 
Eleg2 differs from Eleg1 in just one thing: instead of demanding that the activity i is 
scheduled right after (before) j in M and in F, we simply require this to occur in one 
of these schedules. It is worthwhile mentioning that Eleg1 do not request the activity j 
to begin at the same time in M and F. 

After defining Eleg1 and Eleg2 we can continue with the description of the cross-
over operator, which works as follows at each iteration. If Eleg1 is not empty, the 
procedure randomly selects an activity i from it, and schedules i according to the ac-
tivity j that has lead to the inclusion of i in Eleg1. That is, if i is right before (after) j in 
M and F, now it is also scheduled right before (after) j in D. Note that this does not 
mean that i begins at the same time in D as in both (or any) of the parents. If Eleg1 is 
empty, we act analogously with Eleg2. We scrutinise the sets in this order so that the 
daughter inherits structures that are present in both solutions. If both sets Eleg1 and 
Eleg2 are empty, we randomly choose an unscheduled activity i and schedule it at the 
best point time. Namely, we look at all possible beginnings for i, calculate the objec-
tive function and choose the best alternative. When all activities have been scheduled, 
we return the solution obtained. The son can be obtained by changing the roles of the 
mother and the father. 

Pseudo-code to obtain the daughter D by recombining the mother M and the father F. 

1. ∀i∈framework(M) do Si

D = Si

M , C = V\framework(M), C=∅. 

2. While C  ≠ ∅ 

2.1. Calculate Eleg1. If Eleg1 ≠ ∅, select randomly 
an activity i ∈ Eleg1. 

2.2. Else calculate Eleg2. If Eleg2 ≠ ∅, select ran-
domly an activity i ∈ Eleg2. 

2.3. Else select randomly an activity i ∈ C . 

2.4. If ∃j/ i ∈ before(j,M) ∪ before(j,F), t* = Sj

D – 
pi. Else if ∃j/ j ∈ before(i,M) ∪ before(i,F), 
t*=Sj

D + dj. Else choose the best t* available. 

2.5. Schedule i at t*, C  = C \{i}, C = C ∪ {i}. Up-
date ESi and LSi ∀ i ∈ C . 
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3. Return solution D. 

Eleg1 = {i ∈ C : ∃ j ∈ C / i ∈ before(j,M) ∩ before(j,F) 
with Sj

D – pi ∈ [ESi,LSi] or ∃ j ∈ C / j ∈ before(i,M) ∩ 
before(i,F) with Sj

D + pj ∈ [ESi,LSi]}. 

Eleg2 = {i ∈ C : ∃ j ∈ C / i ∈ before(j,M) ∪ before(j,F) 
with Sj

D – pi ∈ [ESi, LSi] or ∃ j ∈ C / j ∈ before(i,M) ∪ 
before(i,F) with Sj

D + pj ∈ [ESi,LSi]}. 

4.3   Crossover(M,F) 

The mutation operator also plays an important role in genetic algorithms. Taking advan-
tage of the characteristics of the crossover operator, we have embedded the mutation in-
side it. Concretely, we calculate a random number in (0, 1) at each iteration. If it is less 
than a parameter pmut, we proceed as if sets Eleg1 and Eleg2 were empty; otherwise the 
usual steps of the crossover operator are applied. We have fixed pmut to 0.1. 

4.4   Outline of the Basic Algorithm 

We are going to compare two versions of the GA. The outline of the basic GA is the 
following: 

Basic GA 

1. POP = MP + IP(nPop) 

2. While the time limit is not reached 

2.1. Divide POP randomly in pairs. POP_New = ∅. 

2.2. For each pair (M,F) do: 

2.2.1.Daughter = Crossover(M,F). 

2.2.2.Daughter’ = IP(Daughter). 

2.2.3.Son = Crossover(F,M). 

2.2.4.Daughter’ = IP(Son). 

2.2.5.POP_New = POP_New ∪ {Daughter,Son}. 

2.3. POP = Best nPop individuals of POP ∪ POP_New. 
3. Return the best solution obtained. 

The BasicGA first calculates the initial population with the Multi-Pass algorithm of 
section 3 plus the improvement procedure described above. Afterwards the same it-
erations are repeated until the time limit is reached. Firstly, the population is divided 
into pairs. Secondly, the procedure combines each pair M and F to obtain a daughter 
and a son with the crossover described in the previous section. Thirdly, the improve-
ment procedure is applied to both solutions. After working with all the pairs we form 
a new set of solutions with the best nPop individuals of the set formed with the old 
solutions and the new ones. 
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4.5   Diversification 

We have introduced a diversification in the algorithm, based on the function Differ-
ent(S), which selects n/2 activities at random and unschedules them. Afterwards it 
schedules them randomly one by one. Finally, IP is applied to the new solution. A new 
population is created through the application of the function Different to each individual 
of the old population. The new population replaces the old one when certain conditions 
hold. The conditions are that all the individuals share the same objective function or that 
itmax iterations without improvement of the worst individual in the population have 
passed. We have fixed itmax = 5 in preliminary tests with other instances. We have 
compared three different versions of the algorithm, all with a time limit of 5 seconds. 
The diversification improves the genetic algorithm in 0.5%. The best alternative is 
called GA+D2, which obtains 23.99% on average, has a population size of 12 and cal-
culates 24 solutions in the first step, 12 with MP1+IP and 12 with MP2+IP. 

The GA clearly outperforms the multi-pass algorithms with IP. In order to corrobo-
rate the quality of the GA, we have added LS to MP1 with a limit of 10 seconds, ob-
taining an average of 28.35%, more than 1% better than the best MP+IP. However, 
this percentage is 6% worse than the 22.35% of the basicGA. 

5   Comparison with B&BN 

In this section we compare the results of priority rule MST, MP1+IP and GA+D2 
with the B&B from Nübel (2001), B&BN. Tables 1 and 2 present the results for sets 
UBO10c and UBO20c, respectively, divided according to CQ. Lines 2-4 of each table 
show the different average deviations of each algorithm with respect to a lower bound 
calculated by B&BN in its first iteration. We have imposed a time limit of 0.5 seconds 
and 1 second on algorithms GA+D2 and MP1+IP in UBO10c and UBO20c respec-
tively. Algorithm B&BN has a time limit of 10 seconds on both sets, although the av-
erage CPU time is 1.69 and 9.61 seconds respectively. This exact algorithm is not 
able to find the exact solution in every instance with the given time limit. The last line 
of Tables 1 and 2 shows the percentage of optimal solutions found by the B&BN. Note 
that all algorithms have been executed using the same computer. 

We can draw several conclusions. There is a completely different situation with 10 
and with 20 activities. With 10 activities, the exact algorithm is capable of obtaining 
the optimal solution in more than 90% of the instances. In this set of instances, this 
algorithm obtains higher quality solutions in all coefficients than MP1+IP. The prior-
ity rules obtain solutions that are much worse than those obtained by B&BN. The 
metaheuristic and the branch and bound obtain approximately the same solutions’ 
quality for all the coefficients. However, for lower CQ’s the latter is slightly better, 
whereas for the larger CQ’s the former is better. With 20 activities, the behavior of 
B&BN is much worse. Even the priority rule outperforms it. We can also see that the 
metaheuristic algorithm is better than the multi-pass algorithm plus IP in all  
combinations of d and CQ. 
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Table 1. Averages for the different CQ’s and total average in UBO10c 

CQ 0 0.1 0.2 0.5 1 TOTAL 

B&BN 13.79% 25.37% 19.12% 10.25% 5.66% 14.84% 

MST 34.83% 34.17% 24.85% 13.05% 7.20% 22.82% 

MP1+IP 14.17% 25.87% 19.49% 10.39% 5.71% 15.13% 

GA+D2 13.84% 25.42% 19.16% 10.21% 5.62% 14.85% 

% opt. sol. 100.00% 93.89% 90.56% 88.33% 86.39% 91.83% 

Table 2. Averages for the different CQ’s and total average in UBO20c 

CQ 0 0.1 0.2 0.5 1 TOTAL 

B&BN 64.44% 62.07% 41.67% 20.71% 11.23% 40.02% 

MST 55.79% 44.67% 30.66% 15.40% 8.37% 30.98% 

MP1+IP 25.26% 35.78% 24.96% 12.57% 6.67% 21.05% 

GA+D2 20.58% 33.57% 23.45% 11.70% 6.24% 19.11% 

% opt. sol. 14.72% 3.33% 3.06% 2.78% 2.78% 5.33% 

6   Summary and Concluding Remarks 

In this paper we have developed several multi-pass algorithms and a metaheuristic al-
gorithm for the RRP, a project scheduling problem with a resource-based objective 
function. This problem enables us to model the renting of resources and is therefore 
interesting in practice. The metaheuristic algorithm, a GA, relies on a completely new 
codification of solutions and a crossover operator. Other enhancements of the proce-
dure are a local search method and a diversification. The computational results show 
that the metaheuristic algorithm is competitive with the existing (truncated) Branch-
and-Bound in instances of 10 activities. Besides, the GA already outperforms the 
truncated B&B when the projects have 20 activities. 
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Abstract. The Shortest Common Supersequence Problem (SCSP) is
a well-known hard combinatorial optimization problem that formalizes
many real world problems. This paper presents a novel randomized search
strategy, called probabilistic beam search (PBS), based on the hybridiza-
tion between beam search and greedy constructive heuristics. PBS is
competitive (and sometimes better than) previous state-of-the-art algo-
rithms for solving the SCSP. The paper describes PBS and provides an
experimental analysis (including comparisons with previous approaches)
that demonstrate its usefulness.

1 Introduction

The Shortest Common Supersequence Problem (SCSP) is a very well-known
problem in the area of string analysis. Basically, the SCSP consists of finding
a minimal-length sequence s of symbols from a certain alphabet, such that all
strings in a given set L can be embedded in s. The resulting combinatorial prob-
lem is enormously interesting for several reasons. Firstly, the SCSP constitutes a
formalization of different real-world problems. For example, it has many impli-
cations in bioinformatics [1]: it is a problem with a close relationship to multiple
sequence alignment [2], and to probe synthesis during microarray production [3].
This does not exhaust the practical usefulness of the SCSP though, since it also
has applications in planning [4] and data compression [5], among other fields.

Another reason the SCSP has attracted interest lies in its “cleanliness”, that
is, it is an abstract formulation of different real-world problems that can never-
theless be studied from a theoretical point of view in a context-independent way.
Indeed, theoretical computer scientists have analyzed in depth the problem, and
we now have accurate characterizations of its computational complexity. These
characterizations range from the classical complexity paradigm to the more re-
cent parameterized complexity paradigm. We will survey some of these results in
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the next section as well, but it can be anticipated that the SCSP is intrinsically
hard [6,7,8] under many formulations and/or restrictions.

The practical impossibility of utilizing exact approaches for tackling this prob-
lem in general justifies the use of heuristics. Such heuristic approaches are aimed
to producing probably- (yet not provably-) optimal solutions to the SCSP. Good
examples of such heuristics are the Majority Merge (MM) algorithm, and
related variants [9], based on greedy construction strategies. More sophisticated
heuristics have been also proposed, for instance, evolutionary algorithms (EAs)
[9,10,11,12]. In this work, we present a novel randomized search strategy (or
metaheuristic) to tackle the SCSP termed probabilistic beam search (PBS). As
the name indicates, this strategy is based in the framework of beam search, but
also borrows some heuristic ideas from the greedy constructive heuristics men-
tioned before. In the following we will show that this strategy can satisfactorily
compete in the SCSP arena, outperforming previous state-of-the-art approaches.
As a first step, the next section will describe the SCSP in more detail.

2 The Shortest Common Supersequence Problem

First of all, let us introduce some notation that we use in the following. We
write |s| for the length of string s (|s(1)s(2) . . . s(n)| = n, where s(j) ∈ Σ is the
element at the j-th position of s) and ε for the empty string (|ε| = 0). Abusing the
notation, |Σ| denotes the cardinality of set Σ. We use s � α for the total number
of occurrences of symbol α in string s (s(1)s(2) . . . s(n) � α =

∑
1≤i≤n,s(i)=α 1).

We write αs for the string obtained by appending the symbol α in front of string
s. Deleting symbol α from the front of string s is denoted by s|α, and is defined
as s′ when s = αs′, or s otherwise. We also use the | symbol to delete a symbol
from the front of a set of strings: {s1, · · · , sm}|α = {s1|α, · · · , sm|α}. Finally,
s ∈ Σ∗ means that s is a finite length string of symbols in Σ.

Let s and r be two strings of symbols taken from an alphabet Σ. String s
can be said to be a supersequence of r (denoted as s � r) using the following
recursive definition:

s � ε � True
ε � r � False, if r �= ε

αs � αr � s � r

αs � βr � s � βr, if α �= β

(1)

Plainly, s � r implies that r can be embedded in s, meaning that all symbols in
r are present in s in the very same order (although not necessarily consecutive).
For example, given the alphabet Σ = {a, b, c}, aacab � acb. We can now state the
SCSP as follows: an instance I = (Σ, L) for the SCSP is given by a finite alphabet
Σ and a set L of m strings {s1, · · · , sm}, si ∈ Σ∗. The problem consists of finding
a string s of minimal length that is a supersequence of each string in L (s �
si, ∀si ∈ L and |s| is minimal). For example, given I = ({a, b, c}, {cba, abba, abc}),
a shortest common supersequence of I is abcba.
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The SCSP can be shown to be NP−hard, even if strong constraints are posed
on L, or on Σ. For example, it is NP−hard in general when all si have length
two [5], or when the alphabet size |Σ| is two [7]. In principle, these NP−hardness
results would have to be approached with caution, since they merely represent a
worst case scenario. In this sense, a more sensible characterization of the hard-
ness of the SCSP is provided by the framework of parameterized complexity [13].
This is done by approaching the problem from a multidimensional perspective,
realizing its internal structure, and isolating some parameters. If hardness (that
is, non-polynomial behavior) can be isolated within these parameters, the prob-
lem can be efficiently1 solved for fixed values of them. This is the case for several
NP−hard problems such as Vertex Cover [14,15]; the term fixed-parameter
tractable (FPT) is used to denote these problems. Non-FPT problems will fall
under some class in the W−hierarchy. Hardness for class W [1] -the first one
above FPT in the hierarchy- is the current measure of intractability: problems
in this class cannot be efficiently solved (i.e., in fixed polynomial time) for in-
creasing sizes of the parameter.

Several parameterizations are possible for the SCSP. Firstly, the maximum
length k of the supersequence sought can be taken as a parameter. If the alphabet
size is constant, or another parameter, then the problem turns in this case to be
FPT, since there are at most |Σ|k supersequences, and these can be exhaustively
checked. However, this is not very useful in practice because k � max |si|. If
the number of strings m is used as a parameter, then SCSP is W [1]−hard, and
remains so even if |Σ| is taken as another parameter [1], or is constant [8]. Failure
of finding FPT results in this latter scenario is particularly relevant since the
alphabet size in biological problems is fixed (e.g., there are just four nucleotides
in DNA). Furthermore, the absence of FPT algorithms implies the absence of
fully polynomial-time approximation schemes (FPTAS) for the corresponding
problem.

3 Majority Merge Heuristics for the SCSP

The hardness results mentioned previously motivate the utilization of heuristics
for tackling the SCSP. One of the most popular algorithms for this purpose is
Majority Merge (MM). This is a greedy algorithm that constructs a super-
sequence incrementally by adding the symbol most frequently found at the front
of the strings in L, and removing these symbols from the corresponding strings.
More precisely:

Heuristic MM (L = {s1, · · · , sm})
1: let s← ε
2: do
3: for α ∈ Σ do let ν(α | s)←∑

si∈L,si=αs′
i
1

1 Here, efficiently means in time O(f(k)nc), where k is the parameter value, n is the
problem size, f is an arbitrary function of k only, and c is a constant independent
of k and n.
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4: let β ← argmax{ν(α | s) | α ∈ Σ}
5: let L← L|β
6: let s← sβ
7: until

∑
si∈L |si| = 0

8: return s

The myopic functioning of MM makes it incapable of grasping the global struc-
ture of strings in L. In particular, MM misses the fact that the strings can have dif-
ferent lengths [9]. This implies that symbols at the front of short strings will have
more chances to be removed, since the algorithm has still to scan the longer strings.
For this reason, it is less urgent to remove those symbols. In other words, it is bet-
ter to concentrate in shortening longer strings first. This can be done by assigning
a weight to each symbol, depending on the length of the string in whose front is
located. Branke et al. [9] propose to use precisely this string length as weight, i.e.,
step 3 in the previous pseudocode would be modified to have

ν(α | s)←
∑

si∈L,si=αs′
i

|s′i| (2)

This modified heuristic is termed Weighted Majority Merge (WMM), and
its empirical evaluation indicates it can outperform MM on some problem in-
stances in which there is no structure, or the structure is deceptive [9,11].

In this work we also consider look-ahead versions of the WMM heuristic. For
that purpose we use the notation LA-WMM(l), where l > 0 is a parameter
that indicates the size (or depth) of the look-ahead. For example, LA-WMM(0)
denotes the standard WMM heuristic, whereas LA-WMM(1) is obtained by
choosing at each construction step the symbol that corresponds to the first sym-
bol in the best possible sequence of two WMM construction steps. The value
of a sequence of two construction steps is obtained by summing the two corre-
sponding WMM weights (see Equation 2). In the following we will refer to these
look-head values as the LA-WMM(l) weights.

4 Probabilistic Beam Search for the SCSP

In the following we present a probabilistic beam search (PBS) approach for the
SCSP. This algorithm is based on the WMM heuristic outlined before. Beam
search is a classical tree search method that was introduced in the context of
scheduling [16]. The central idea behind beam search is to allow the extension
of partial solutions in more than one way. The version of beam search that we
implemented—see algorithm PBS below—works as follows: At each step of the
algorithm is given a set B of partial solutions which is called the beam. At the
start of the algorithm B only contains the empty partial solution ε (that is,
B = {ε}). Let C denote the set of all possible children of the partial solutions in
B. Note that a child of a string s is obtained by appending one of the symbols
from Σ to it. At each step, kext different (partial) solutions from C are selected;
each selection step is either performed probabilistically or deterministically. A
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chosen (partial) solution is either stored in set Bcompl in case it is a complete
solution, or in the new beam B otherwise. At the end of each construction step
the new beam B is reduced in case it contains more than kbw (called the beam
width) partial solutions. This is done by evaluating the partial solutions in B
by means of a lower bound LB(·), and by subsequently selecting the kbw partial
solutions with the smallest lower bound values.

Algorithm PBS(kext, kbw, sbsf, d)
1: let Bcompl = ∅
2: let B = {ε}
3: while B �= ∅
4: let C ← Children of(B)
5: let B ← ∅
6: for k = 1, . . . , kext do
7: let st ← Choose From(C, d)
8: if LB(st) = |st| then
9: let Bcompl ← Bcompl ∪ {st}

10: if |st| < |sbsf| then sbsf ← st endif
11: else
12: if LB(st) ≤ |sbsf| then B ← B ∪ {st} endif
13: end if
14: let C ← C \ {st}
15: end for
16: let B ← Reduce(B,kbw)
17: end while
18: return argmin {|s| |s ∈ Bcompl }

In the following we explain the functions of algorithm PBS in more detail.
First of all, let us define the following function that will be useful to calculate
lower bounds of partial solutions:

s 
 ε � (ε, ε)
ε 
 r � (ε, r), if r �= ε

αs 
 αr � (αre, rr), where (re, rr) = s
 r

αs 
 βr � s
 βr, if α �= β

(3)

Intuitively, s 
 r = (re, rr) if re is the longest initial segment of string r
embedded by s and rr is the remaining part of r not embedded by s (i.e.,
r = rerr). Note that s � r ⇐⇒ s
 r = (r, ε).

Function Children of(B) produces the set C of all possible children of the
partial solutions in B. Note that, given a partial solution st, at most |Σ| children
can be generated by appending each of the symbols from Σ to st. Children with
unproductive characters (i.e., not contributing to embedding any string in L)
are not added to C.

Another important function of algorithm PBS is Choose From(C, d). Upon
invocation, this function returns one of the partial solutions from set C. This
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is done as follows. First, we calculate for each st ∈ C a heuristic value η(st)
as follows:

η(st)←
⎛

⎝
|st|∑

i=1

νr
(
st(i) | st(1)st(2) . . . st(i− 1)

)
⎞

⎠

−1

, (4)

where νr(α | s) is the rank of the weight ν(α | s) which the LA-WMM(l)
heuristic assigns to the extension α of string s (see Section 3). The rank of ex-
tending string s by symbol α is obtained by sorting all possible extensions of
string s with respect to their LA-WMM(l) weights in descending order. Note
that the sum shown in Equation 4 is the sum of the ranks of the LA-WMM(l)
weights that are used for constructing the partial solution st. For example, in
case st can be constructed by always appending the symbol suggested by the LA-

WMM(l) heuristic, the heuristic value of st is η(st) =
(∑|st|

i=1 1
)−1

= (|st|)−1.
This way of defining the heuristic values has the effect that partial solutions ob-
tained by mostly following the suggestions of the LA-WMM(l) heuristic have
a greater heuristic value than others. Given the heuristic values we can de-
fine the probability of a (partial) solution st from C to be chosen in function
Choose From(C, d):

p(st)← η(st)
∑

sl∈C η(sl)
(5)

However, instead of always choosing a partial solution st ∈ C probabilistically,
we employ the following mixed strategy. First, a random number r ∈ [0, 1] is
drawn. If r < d (where d ∈ [0, 1] is a parameter of the algorithm), the partial
solution s∗ to be returned by function Choose From(C, d) is selected such
that s∗ ← argmax{p(st) | st ∈ C}. Otherwise, a partial solution is chosen by
roulette-wheel-selection using the probabilities defined in Equation 5.2

Finally, the lower bound LB(st) of a partial solution st is calculated as follows:
First, we calculate the set of remaining strings in L not embedded by st as follows:

R(st) = {ri | (se
i , ri) = st 
 si, si ∈ L} (6)

Let M(α, R(st)) be the maximum number of occurrences of symbol α in any
string in R(st):

M(α, R(st)) = max{ri � α | ri ∈ R(st)} (7)

Clearly, every common supersequence for the remaining strings must contain
at least M(α, R(st)) copies of the symbol α. Thus a lower bound is obtained
by summing the length of the partial solution st and the maximum number of
occurrences of each symbol of the alphabet in any string in R(st):

|st|+
∑

α∈Σ

M(α, R(st)) (8)

2 This strategy is known as the pseudo-random proportional transition rule in the
context of the metaheuristic ant colony optimization.
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Note that we use algorithm PBS in a multi-start fashion, that is, given a CPU
time limit we apply algorithm PBS over and over again until the CPU limit is
reached. The best solution found, denoted by sbsf, is recorded. In fact, this solu-
tion is one of the input parameters of algorithm PBS. It is used to exclude partial
solutions whose lower bound value exceeds |sbsf| from further consideration.

5 Experimental Evaluation

We implemented our algorithm in ANSI C++ using GCC 3.2.2 for compiling the
software. Our experimental results were obtained on a PC with an AMD64X2
4400 processor and 4 Gb of memory.

Two different sets of benchmark instances have been used in the experimen-
tation. The first one—henceforth referred to as Set1—is composed of random
strings with different lengths. To be precise, each instance is composed of eight
strings, four of them of length 40, and the other four of length 80. Each of these
strings is randomly generated, using an alphabet Σ. The benchmark set consists
of 5 classes of each 5 instances characterized by different alphabet sizes, namely
|Σ| = 2, 4, 8, 16, and 24. Accordingly, the benchmark set consists of 25 differ-
ent problem instances. The same instances were used for experimentation, for
example, in [11].

A second set of instances is composed of strings with a common source. To
be precise, we have considered strings obtained from molecular sequences. The
sequences considered comprise both DNA sequences (|Σ| = 4) and protein se-
quences (|Σ| = 20). In the first case, we have taken two DNA sequences of the
SARS coronavirus from a genomic database3; these sequences are 158 and 1269
nucleotides long. As to the protein sequences, we have considered three of them,
extracted from Swiss-Prot4:

– Oxytocin: quite important in pregnant women, this protein causes contrac-
tion of the smooth muscle of the uterus and of the mammary gland. The
sequence is 125-aminoacid long.

– p53 : this protein is involved in the cell cycle, and acts as tumor suppressor
in many tumor types; the sequence is 393-aminoacid long.

– Estrogen: involved in the regulation of eukaryotic gene expression, this pro-
tein affects cellular proliferation and differentiation; the sequence is 595-
aminoacid long.

In all cases, problem instances are constructed by generating strings from the
target sequence by removing symbols from the latter with probability p%. In our
experiments, problem instances comprise 10 strings, and p ∈{10%,15%,20%}.

5.1 Algorithm Tuning

First we wanted to find reasonable settings for the parameters of PBS. Remem-
ber that PBS has 4 parameters: kbw is the beam width; kext is the number of
3 http://gel.ym.edu.tw/sars/genomes.html
4 http://www.expasy.org/sprot/
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Fig. 1. The z-axis of each graphic shows the average performance of PBS with
the parameter settings as specified by the x-axis (parameter d) and the y-axis
(parameter kbw)

children to be chosen from set C at each step; d is the parameter that controls
the extent to which the choice of children from C is performed deterministically.
If d = 1.0, this choice is always done deterministically, whereas when d = 0.0 the
choice is always done by roulette-wheel-selection; Finally, l is the depth of the
look-ahead function, that is, the parameter in LA-WMM(l) (see Section 3).

In order to reduce the set of parameters to be considered for tuning we decided
beforehand to set kext = 2 ·kbw. In preliminary experiments we found this setting
to be reasonable. Concerning the remaining parameters we tested the following
settings: kbw ∈ {1, 10, 50}, d ∈ {0.0, 0.25, 0.5, 0.75, 0.95}, and l ∈ {0, 1, 2, 3}. First
we studied the relation between parameters kbw and d, fixing parameter l to the
maximum value 3 (that is, l = 3). We applied PBS with each combination of
parameter values 5 times for 500 CPU seconds to each of the problem instances of
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Fig. 2. The y-axis of each graphic shows the average performance (and its standard
deviation) of PBS with the parameter setting of l as specified by the x-axis

Table 1. Results for the instances of Set1

MM WMM
|Σ| best mean ± σ i.% best mean ± σ i.%

2 112.0 112.0 ± 0.1 0.0 114.8 114.8 ± 0.0 -2.5
4 152.6 153.4 ± 0.7 0.0 157.8 157.8 ± 0.0 -2.8
8 212.4 213.8 ± 0.9 0.0 208.2 208.2 ± 0.0 2.6
16 283.8 286.1 ± 2.0 0.0 272.8 273.4 ± 0.5 4.4
24 330.2 333.9 ± 2.3 0.0 324.0 325.2 ± 0.7 2.6

Hybrid MA-BS PBS
|Σ| best mean ± σ i.% best mean ± σ i.%

2 110.6 110.7 ± 0.0 1.2 110.8 110.9 ± 1.7 1.0
4 145.6 146.4 ± 0.5 4.6 144.8 145.4 ± 1.5 5.2
8 191.6 192.6 ± 1.4 9.9 186.4 187.2 ± 1.7 12.4
16 242.8 244.0 ± 1.0 14.7 240.4 241.9 ± 3.4 15.4
24 280.2 281.2 ± 0.8 15.8 276.4 277.9 ± 4.0 16.8

Set1. This provided us with 25 results for each instance class (as characterized
by the alphabet size). The averaged results for each instance class are shown
in the graphics of Figure 1. The results show that, in general, PBS needs some
determinism in extension of partial solutions (d > 0.0), as well as a beam width
greater than 1 (d > 1). However, in particular for the problem instances with
a smaller alphabet size, the determinism should not be too high and the beam
width should not be too big. Therefore, we decided for the settings d = 0.5 and
kbw = 10 for all further experiments.

Finally we performed experiments to decide for the setting of l, that is, the
parameter of the look-ahead mechanism. We applied PBS with the four different
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settings of l (l ∈ {0, 1, 2, 3} 5 times for 500 CPU seconds to each of the problem
instances of Set1. This provides us with 25 results for each instance class. The
averaged results for each instance class are shown in the graphics of Figure 2.
The results show that, in general, the setting of l = 3 is best. Especially when
the alphabet size is rather large, the performance of PBS is better the higher l
is. Only for Σ = 2, the setting of l does not play much of a role. Therefore, we
decided for the setting l = 3 for all further experiments.

5.2 Final Experimental Evaluation

We compare the results of PBS to 3 different algorithms: MM refers to a multi-
start version of the MM heuristic. This can be done as in case of ties during
the solution construction they are broken randomly. Furthermore, WMM refers
to a multi-start version of the WMM heuristic, and Hybrid MA-BS refers to

Table 2. Results of the different algorithms for the biological sequences

158-nucleotide SARS sequence
MM WMM Hybrid MA-BS PBS

gap% best mean ± σ best mean ± σ best mean ± σ best mean ± σ

10% 158 158.0 ± 0.0 158 158.0 ± 0.0 158 158.0 ± 0.0 158 158.0 ± 0.0
15% 160 160.0 ± 0.0 231 231.0 ± 0.0 158 158.0 ± 0.0 158 158.0 ± 0.0
20% 228 229.6 ± 1.8 266 266.0 ± 0.0 158 158.0 ± 0.0 158 158.0 ± 0.0

1269-nucleotide SARS sequence
MM WMM Hybrid MA-BS PBS

gap% best mean ± σ best mean ± σ best mean ± σ best mean ± σ

10% 1970 2039.9 ± 32.9 2455 2455.0 ± 0.0 1269 1269.0 ± 0.0 1269 1269.0 ± 0.0
15% 2151 2236.4 ± 30.4 2346 2346.0 ± 0.0 1269 1269.0 ± 0.0 1269 1303.8 ± 36.6
20% 2163 2180.2 ± 13.9 2207 2207.0 ± 0.0 1269 1269.0 ± 0.0 1571 1753.2 ± 61.0

125-aminoacid Oxytocin sequence
MM WMM Hybrid MA-BS PBS

gap% best mean ± σ best mean ± σ best mean ± σ best mean ± σ

10% 126 126.0 ± 0.0 126 126.0 ± 0.0 125 125.0 ± 0.0 125 125.0 ± 0.0
15% 126 126.0 ± 0.0 126 126.0 ± 0.0 125 125.0 ± 0.0 125 125.0 ± 0.0
20% 132 132.0 ± 0.0 227 227.0 ± 0.0 125 125.0 ± 0.0 125 125.0 ± 0.0

393-aminoacid p53 sequence
MM WMM Hybrid MA-BS PBS

gap% best mean ± σ best mean ± σ best mean ± σ best mean ± σ

10% 393 393.0 ± 0.0 396 396.0 ± 0.0 393 393.0 ± 0.0 393 393.0 ± 0.0
15% 422 422.0 ± 0.0 832 832.0 ± 0.0 393 393.0 ± 0.0 393 393.0 ± 0.0
20% 612 677.1 ± 40.7 833 833.0 ± 0.0 393 393.0 ± 0.0 393 393.0 ± 0.0

595-aminoacid Estrogen sequence
MM WMM Hybrid MA-BS PBS

gap% best mean ± σ best mean ± σ best mean ± σ best mean ± σ

10% 628 628.0 ± 0.0 1156 1156.0 ± 0.0 595 595.0 ± 0.0 595 595.0 ± 0.0
15% 671 672.9 ± 2.0 1232 1242.1 ± 4.5 595 595.0 ± 0.0 595 595.0 ± 0.0
20% 1071 1190.3 ± 66.2 1324 1327.9 ± 4.6 595 595.0 ± 0.0 596 596.0 ± 0.0
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an algorithm that is a hybrid between beam search and a memetic algorithm.
Note that Hybrid MA-BS is a current state-of-the-art technique for the SCSP.
The results for all three techniques are taken from [17]. The stopping criterion
of MM, WMM, and Hybrid MA-BS was 600 CPU time seconds on a Pentium
IV PC with 2400 MHz and 512 MB of memory. This corresponds roughly to the
350 CPU time seconds that we allowed on our machine for PBS.

First, we present the results of PBS for the instances of Set1 in numerical
form in Table 1. The results show that PBS is always better than the basic greedy
heuristics. With respect to the more sophisticated MA-BS algorithm, the results of
PBS are roughly equivalent for |Σ| = 2. In the remaining instances, PBS improves
significantly over the results of Hybrid MA-BS. Even the average performance of
PBS is always better than the best performance of Hybrid MA-BS.

As to the biological sequences, the results are shown in Table 2. Again, PBS
can be seen to be notoriously better than the greedy algorithms. With respect to
MA-BS, PBS is capable of performing at the same level in most instances, sys-
tematically finding the optimal solutions. Only in the largest problem instances
PBS starts to suffer from the curse of dimensionality. Notice nevertheless that
PBS has still room for improvement. For example, using a larger beam width
kbw = 100 (instead of kbw = 10), the results for the two harder SARS DNA
instances are notably improved: for 15% gap, the mean result is 1269±0.0 (i.e.,
systematically finding the optimal solution); for 20% gap, the mean result is
1483±143.1 (best result = 1294) which is much closer to optimal. Further fine-
tuning of the parameters may produce even better results.

6 Conclusions and Future Work

We have introduced PBS, a novel metaheuristic that blends ideas from beam
search and randomized greedy heuristics. Though relatively simple, and with
just four parameters, PBS has been shown to be competitive with a much more
complex hybrid metaheuristic for the SCSP that combines beam search and
memetic algorithms. Furthermore, PBS has clearly outperformed this latter al-
gorithm in one set of instances. In all cases, PBS has also been shown to be
superior to two popular greedy heuristics for the SCSP. In general, PBS is a
metaheuristic framework that can be applied to any optimization problem for
which exist (1) a constructive mechanism for producing solutions and (2) a lower
bound for evaluating partial solutions.

The scalability of PBS is one of the features that deserves further exploration.
As indicated by current results, an adequate parameterization of the algorithm
can lead to improved results. The underlying greedy heuristic using within PBS,
or the probabilistic choosing procedure can be also adjusted. The possibilities
are manifold, and work is currently underway in this direction. An additional
line of research is the hybridization of PBS with memetic algorithms. A plethora
of models are possible in this sense, and using the same algorithmic template of
the MA-BA hybrid would be a natural first step.
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Abstract. We describe an implementation of a genetic algorithm on
partially commutative groups and apply it to the double coset search
problem on a subclass of groups. This transforms a combinatorial group
theory problem to a problem of combinatorial optimisation. We obtain
a method applicable to a wide range of problems and give results which
indicate good behaviour of the genetic algorithm, hinting at the presence
of a new deterministic solution and a framework for further results.

1 Introduction

1.1 History and Background

Genetic algorithms (hereafter referred to as GAs) were introduced by Holland
[4] and have enjoyed a recent renaissance in many applications including engi-
neering, scheduling and attacking problems such as the travelling salesman and
graph colouring problems. However, the use of GAs in group theory [1,7,8] has
been in operation for a comparatively short time.

This paper discusses an adaptation of GAs for word problems in combinatorial
group theory. We work inside the Vershik groups [11], a subclass of partially
commutative groups (also known as graph groups [10] and trace groups). We
omit a survey of the theory of the groups here and focus on certain applications.

There exists an explicit solution for many problems in this setting. The bi-
automaticity of the partially commutative groups is established in [10], so as a
corollary the conjugacy problem is solvable. Wrathall [12] gave a fast algorithm
for the word problem based upon restricting the problem to a monoid generated
by group generators and their formal inverses. In [13], an algorithm is given for
the conjugacy problem; it is linear time by a stack-based computation model.

Our work is an experimental investigation of GAs in this setting to determine
why they seem to work in certain areas of combinatorial group theory and to de-
termine bounds for what happens for given problems. This is done by translating
given word problems to ones of combinatorial optimisation.

1.2 Partially Commutative Groups and Vershik Groups

Let X = {x1, x2, . . . , xn} be a finite set and define the operation of multiplication
of xi, xj ∈ X to be the juxtaposition xixj . As in [13], we specify a partially
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commutative group G(X) by X and the collection of all elements from X that
commute; that is, the set of all pairs (xi, xj) such that xi, xj ∈ X and xixj =
xjxi. For example, take X = {x1, x2, x3, x4} and suppose that x1x4 = x4x1 and
x2x3 = x3x2. Then we denote this group G(X) = 〈X : [x1, x4], [x2, x3]〉.

The elements of X are called generators for G(X). Note that for general G(X)
some generators commute and some do not, and there are no other non-trivial
relations between the generators. We concentrate on Vershik groups, a particular
subclass of the above groups. For a set X with n elements as above, the Vershik
group of rank n over X is given by

Vn = 〈X : [xi, xj ] if |i− j| ≥ 2〉 .
For example, in the group V4 the pairs of elements that commute with each other
are (x1, x3), (x1, x4) and (x2, x4). We may also write this as V (X) assuming an
arbitrary set X . The elements of Vn are represented by group words written as
products of generators. The length, l(u), of a word u ∈ Vn is the minimal number
of single generators from which u can be written. For example u = x1x2x4 ∈ V4

is a word of length three. We use xμ
i to denote μ successive multiplications of

the generator xi; for example, x4
2 = x2x2x2x2. Denote the empty word ε ∈ Vn.

For a subset, Y , of the set X we say the Vershik group V (Y ) is a parabolic
subgroup of V (X). It is easily observed that any partially commutative group G
may be realised as a subgroup of a Vershik group Vn of sufficiently large rank n.

Vershik [11] solved the word problem in Vn by means of reducing words to
their normal form. The Knuth-Bendix normal form of a word u ∈ Vn of length
l(u) may be thought of as the “shortest form” of u and is given by the unique
expression

u = xμ1
i1

xμ2
i2

. . . xμk

ik

such that all μi �= 0, l(u) =
∑ |μi| and

i) if ij = 1 then ij+1 > 1;
ii) if ij = m < n then ij+1 = m− 1 or ij+1 > m;

iii) if ij = n then ij+1 = n− 1.

The name of the above form follows from the Knuth-Bendix algorithm with
ordering x1 < x−1

1 < x2 < x−1
2 < . . . < xn < x−1

n . We omit further discussion of
this here; the interested reader is referred to [6] for a description of the algorithm.

The algorithm to produce the above normal form is essentially a restriction
of the stack-based (or heap-based) algorithm of [12] to the Vershik group, and
we thus conjecture that the normal form of a word u ∈ Vn may be computed
efficiently in time O (l(u) log l(u)) for the “average case”. From now on we write
u to mean the normal form of the word u. For a word u ∈ Vn, we say that

RF (u) = {xα
i : l(ux−α

i ) = l(u)− 1, α = ±1}
is the roof of u and

FL(u) = {xα
i : l(x−α

i u) = l(u)− 1, α = ±1}
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is the floor of u. The roof (and floor) of u correspond to the generators which
may be cancelled after their inverses are juxtaposed to the right (and left) end
of u to create the word u′ and u′ is reduced to its normal form u′. For example,
if u = x−1

1 x2x6x
−1
5 x4x1 then RF (u) = {x1, x4} and FL(u) = {x−1

1 , x6}.

2 Statement of Problem

Given a Vershik group Vn and two words a, b in the group, we wish to determine
whether a and b lie in the same double coset with respect to given subgroups.
In other words, consider the following problem:

The Double Coset Search Problem (DCSP). Given two parabolic sub-
groups V (Y ) and V (Z) of a Vershik group Vn and two words a, b ∈ Vn such that
b ∈ V (Y ) a V (Z), find words x ∈ V (Y ) and y ∈ V (Z) such that b = xay.

We attack this group-theoretic problem by transforming it into one of com-
binatorial optimisation. In the following exposition, an instance of the DCSP is
specified by a pair (a, b) of given words, each in Vn, and the notation M((a, b))
denotes the set of all feasible solutions to the given instance. We will use a GA
to iteratively produce “approximations” to solutions to the DCSP, and denote
an “approximation” for a solution (x, y) ∈M((a, b)) by (χ, ζ) ∈ V (Y )× V (Z).

Combinatorial Optimisation DCSP

Input: Two words a, b ∈ Vn.
Constraints: M((a, b)) = {(χ, ζ) ∈ V (Y )× V (Z) : χaζ

.= b}.
Costs: The function C((χ, ζ)) = l(χaζb−1) ≥ 0.
Goal: Minimise C.

The cost of the pair (χ, ζ) is a non-negative integer imposed by the above
function C. The length function defined on Vn takes non-negative values; hence
an optimal solution for the instance is a pair (χ, ζ) such that C((χ, ζ)) = 0.
Therefore our goal is to minimise the cost function C.

As an application of our work, note that the Vershik groups are inherently
related to the braid groups, a rich source of primitives for algebraic cryptography.
In particular, the DCSP in the Vershik groups is an analogue of an established
braid group primitive. The reader is invited to consult [5] for further details.

In the next section we expand these notions and detail the method we use to
solve this optimisation problem.

3 Genetic Algorithms on Vershik Groups

3.1 An Introduction to the Approach

For brevity we do not discuss the elementary concepts of GAs here, but refer the
reader to [4,9] for a discussion of GAs and remark that we use standard terms
such as cost-proportionate selection and reproductive method in a similar way.
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We give a brief introduction to our approach. We begin with an initial popula-
tion of “randomly generated” pairs of words, each pair of which is treated as an
approximation to a solution (x, y) ∈M((a, b)) of an instance (a, b) of the DCSP.
We explicitly note that the GA does not know either of the words x or y. Each
pair of words in the population is ranked according to some cost function which
measures how “closely” the given pair of words approximates (x, y). After that
we systematically imitate natural selection and breeding methods to produce a
new population, consisting of modified pairs of words from our initial population.
Each pair of words in this new population is then ranked as before. We continue
to iterate populations in this way to gather steadily closer approximations to a
solution (x, y) until we arrive at a solution (or otherwise).

3.2 The Representation and Computation of Words

We work in Vn and two given parabolic subgroups V (Y ) and V (Z), and wish
the GA to find an exact solution to a posed problem. We naturally represent a
group word u = xμ1

i1
xμ2

i2
. . . xμk

ik
of arbitrary length by a string of integers, where

we consecutively map each generator of the word u as follows:

xεi

i →
{

+i if εi = +1
−i if εi = −1

For example, if u = x−1
1 x4x2x

2
3x7 ∈ V7 then u is represented by the string

-1 4 2 3 3 7. In this context the length of u is equal to the number of integers
in its string representation. We define a chromosome to be the GA representation
of a pair (χ, ζ) of words, and note that each word is naturally of variable length.
Moreover a population is a multiset of a fixed number p of chromosomes. The GA
has two populations in memory, the current population and the next generation.
As with traditional GAs the current population contains the chromosomes under
consideration at the current iteration of the GA, and the next generation has
chromosomes deposited into it by the GA which form the current population on
the next iteration. A subpopulation is a submultiset of a given population.

We use the natural representation for ease of algebraic operation, acknowl-
edging that faster or more sophisticated data structures exist, for example the
stack-based data structure of [13]. However we believe the simplicity of our rep-
resentation yields relatively uncomplicated reproductive algorithms. In contrast,
we believe a stack-based data structure yields reproductive methods of consid-
erable complexity. We give our reproductive methods in the next subsection.

Besides normal form reduction of a word u we use pseudo-reduction of u. Let
{ xij1

, x−1
ij1

, . . . , xijm
, x−1

ijm
} be the generators which would be removed from u if

we were to reduce u to normal form. Pseudo-reduction of u is defined as simply
removing the above generators from u. There is no reordering of the resulting
word (as with normal form). For example, if u = x6x8x

−1
1 x2x

−1
8 x−1

2 x6x4x5 then
its pseudo-normal form is ũ = x6x

−1
1 x6x4x5 and the normal form of u is u =

x−1
1 x4x

2
6x5. Clearly, we have l(ũ) = l(u). This form is efficiently computable,

with complexity at most that of the algorithm used to compute the normal form
u. Note, a word is not assumed to be in any given form unless otherwise stated.
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3.3 Reproduction

The following reproduction methods are adaptations of standard GA reproduc-
tion methods. The methods act on a subpopulation to give a child chromosome,
which we insert into the next population (more details are given in section 5).

1. Sexual (crossover): by some selection function, input two parent chromo-
somes c1 and c2 from the current population. Choose one random segment
from c1, one from c2 and output the concatenation of the segments.

2. Asexual: input a parent chromosome c, given by a selection function, from the
current population. Output one child chromosome by one of the following:
(a) Insertion of a random generator into a random position of c.
(b) Deletion of a generator at a random position of c.
(c) Substitution of a generator located at a random position in c with a

random generator.
3. Continuance: return several chromosomes c1, c2, . . . , cm chosen by some se-

lection algorithm, such that the first one returned is the “fittest” chromosome
(see the next subsection). This method is known as partially elitist.

4. Non-Local Admission: return a random chromosome by some algorithm.

With the exception of continuance, the methods are repeated for each child
chromosome required.

3.4 The Cost Function

In a sense, a cost function induces a partial metric over the search space to
give a measure of the “distance” of a chromosome from a solution. Denote the
solution of an instance of the DCSP in section 2 by (x, y) and a chromosome by
(χ, ζ). Let E(χ, ζ) = χaζb−1; for simplicity we denote this expression by E. The
normal form of the above expression is denoted E. When (χ, ζ) is a solution to
an instance, we have E = ε (the empty word) with defined length l(E) = 0.

The cost function we use is as follows: given a chromosome (χ, ζ) its cost
is given by the formula C((χ, ζ)) = l(E). This value is computed for every
chromosome in the current population at each iteration of the GA. This means
we seek to minimise the value of C((χ, ζ)) as we iterate the GA.

3.5 Selection Algorithms

We realise continuance by roulette wheel selection. This is cost proportionate.
As we will see in Algorithm 2, we implicitly require the population to be ordered
best cost first. To this end, write the population as a list {(χ1, ζ1), . . . , (χp, ζp)}
where C(χ1, ζ1) ≤ C(χ2, ζ2) ≤ . . . ≤ C(χp, ζp). Then the algorithm is as follows:

Algorithm 1 (Roulette Wheel Selection)

Input: The population size p; the population chromosomes (χi, ζi); their costs
C((χi, ζi)); and ns, the number of chromosomes to select
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Output: ns chromosomes from the population

1. Let W ←∑p
i=1 C((χi, ζi));

2. Compute the sequence {ps} such that ps((χi, ζi))← C((χi,ζi))
W ;

3. Reverse the sequence {ps};
4. For j = 1, . . . , p, compute qj ←

∑j
i=1 ps((χi, ζi));

5. For t = 1, . . . , ns, do
(a) If t = 1 output (χ1, ζ1), the chromosome with least cost. End.
(b) Else

i. Choose a random r ∈ [0, 1];
ii. Output (χk, ζk) such that qk−1 < r < qk. End.

The algorithm respects the requirement that chromosomes with least cost are
selected more often. For crossover we use tournament selection, where we input
three randomly chosen chromosomes in the current population and select the
two with least cost. If all three have identical cost, then select the first two
chosen. Selection of chromosomes for asexual reproduction is at random from
the current population.

4 Traceback

In many ways, cost functions are a large part of a GA. But the reproduction
methods often specify that a random generator is chosen, so reducing the number
of possible choices of generator may serve to guide the GA. We give a possible
approach to reducing this number and term it traceback. In brief, we take the
problem instance given by the pair (a, b) and use a and b to determine properties
of a feasible solution (x, y) ∈ M((a, b)) to the instance. This approach exploits
the “geometry” of the search space by tracking the process of reduction of E to
its normal form in Vn and proceeds as follows:

Recall Y and Z respectively denote the set of generators of the parabolic
subgroups G(Y ) and G(Z). Suppose we have a chromosome (χ, ζ) at some stage
of the GA computation. Form the expression E = χaζb−1 associated to the given
instance of the DCSP and label each generator from χ and ζ with its position in
the product χζ. Then reduce E to its normal form E; during reduction the labels
travel with their associated generators. As a result some generators from χ or ζ
may be cancelled or not, and the set of labels of the non-cancelled generators of
χ and ζ give the original positions.

The generators in Vn which commute mean that the chromosome may be split
into blocks {βi}. Each block is formed from at least one consecutive generator
of χ and ζ which move together under reduction of E. Let B be the set of all
blocks from the above process. Now a block βm ∈ B and a position q (which
we call the recommended position) at either the left or right end of that block
are randomly chosen. Depending upon the position chosen, take the subword δ
between either the current and next block βm+1 or the current and prior block
βm−1 (if available). If there is just one block, then take δ to be between β1 and
the end or beginning of E.
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Then identify the word χ or ζ from which the position q originated and its
associated generating set S = Y or S = Z. The position q is at either the left
or right end of the chosen block. So depending on the end of the block chosen,
randomly select the inverse of a generator from RF (δ) ∩ S or FL(δ) ∩ S. Call
this the recommended generator g. Note if both χ and ζ are entirely cancelled
(and so B is empty), we return a random recommended generator and position.

With these, the insertion algorithm inserts the inverse of the generator on
the appropriate side of the recommended position in χ or ζ. In the cases of
substitution and deletion, we substitute the recommended generator or delete
the generator at the recommended position. We now give an example for the
DCSP on V10 with the two parabolic subgroups of V (Y ) = V7 and V (Z) = V10.

Example of Traceback on a Given Instance. Take the short DCSP instance

(a, b) = (x2
2x3x4x5x

−1
4 x7x

−1
6 x9x10, x2

2x4x5x
−1
4 x3x7x

−1
6 x10x9)

and let the current chromosome be (χ, ζ) = (x3x
−1
2 x−1

3 x5x7, x5x2x3x
−1
7 x10).

Represent the labels of the positions of the generators in χ and ζ by the following
numbers immediately above each generator:

0 1 2 3 4 5 6 7 8 9
x3 x−1

2 x−1
3 x5 x7 x5 x2 x3 x−1

7 x10

Forming E and reducing it to its Knuth-Bendix normal form gives

E =

0 1 2 3 4
x3 x−1

2 x−1
3 x2 x2 x3 x−1

2 x5 x4 x5 x−1
4 x7 x7

5 8 9
x−1

6 x5 x4 x−1
7 x6 x−1

5 x−1
4 x−1

7 x9 x10 x10 x−1
9 x−1

10

which contains eight remaining generators from (χ, ζ). Take cost to be C((χ, ζ)) =
l(E) = 26, the number of generators in E above. There are three blocks for χ:

β1 =
0 1 2
x3 x−1

2 x3
, β2 =

3
x5

, β3 =
4
x7

and three for ζ:

β4 =
5
x5

, β5 =
8

x−1
7

, β6 =
9

x10

Suppose we choose position eight, which is in ζ and is block β5. This is a block
of length one; we may take the word to the left or the right as our choice for δ.

Suppose we choose the word to the right, so δ = x6x
−1
5 x−1

4 x−1
7 x9x10 and in

this case, S = {x1, . . . , x10}. So we choose a random generator from FL(δ)∩S =
{x6, x9}. Choose g = x−1

6 and so ζ becomes ζ′ = x5x2x3x
−1
7 x−1

6 x10, with χ′ = χ.
The cost becomes C((χ′, ζ′)) = l(χ′aζ′b−1) = 25. Note that we could have taken
any block and the permitted directions to create δ. In this case, there are eleven
choices of δ, clearly considerably fewer than the total number of subwords of
E. Traceback provides a significant increase in performance over merely random
selection (this is easily calculated in the above example to be by a factor of 38).
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5 Setup of the Genetic Algorithm

5.1 Specification of Output Alphabet

Let n = 2m for some integer m > 1. Define the subsets of generators Y =
{x1, . . . , xm−1}, Z = {xm+2, . . . , xn} and two corresponding parabolic sub-
groups G(Y ) = 〈Y 〉 , G(Z) = 〈Z〉. Clearly G(Y ) and G(Z) commute as groups:
if we take any m > 1 and any words xy ∈ G(Y ), xz ∈ G(Z) then xyxz = xzxy .
We direct the interested reader to [5] for information on the importance of the
preceding statement. Given an instance (a, b) of the DCSP with parabolic sub-
groups as above, we will seek a representative for each of the two words x ∈ G(Y )
and y ∈ G(Z) that are a solution to the DCSP. Let us label this problem (P ).

5.2 The Algorithm and Its Parameters

Given a chromosome (χ, ζ) we choose crossover to act on either χ or ζ at random,
and fix the other component of the chromosome. Insertion is performed according
to the position in χ or ζ given by traceback and substitution is with a random
generator, both such that if the generator chosen cancels with a neighbouring
generator from the word then another random generator is chosen. We choose to
use pseudo-normal form for all chromosomes to remove all redundant generators
while preserving the internal ordering of (χ, ζ).

By experiment, GA behaviour and performance is mostly controlled by the
parameter set chosen. A parameter set is specified by the population size p and
numbers of children begat by each reproduction algorithm. The collection of
numbers of children is given by a multiset of non-negative integers P = {pi},
where

∑
pi = p and each pi is given, in order, by the number of crossovers,

substitutions, deletions, insertions, selections and random chromosomes. The
GA is summarised by the following algorithm:

Algorithm 2 (GA for DCSP)

Input: The parameter set, words a, b and their lengths l(a), l(b), suicide
control σ, initial length LI

Output: A solution (χ, ζ) or timeout; i, the number of populations

1. Generate the initial population P0, consisting of p random (unreduced)
chromosomes (χ, ζ) of initial length LI;

2. i← 0;
3. Reduce every chromosome in the population to its pseudo-normal form.
4. While i < σ do

(a) For j = 1, . . . , p do
i. Reduce each pair (χj , ζj)∈Pi to its pseudo-normal form (χ̃j , ζ̃j);
ii. Form the expression E = χ̃j a ζ̃j b−1;
iii. Perform the traceback algorithm to give C((χj , ζj)), recom-

mended generator g and recommended position q;
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(b) Sort current population Pi into least-cost-first order and label the
chromosomes (χ̃1, ζ̃1), . . . , (χ̃p, ζ̃p);

(c) If the cost of (χ̃1, ζ̃1) is zero then return solution (χ1, ζ1) and
END.

(d) Pi+1 ← ∅;
(e) For j = 1, . . . , p do

i. Using the data obtained in step 4(a)(iii), perform the appro-
priate reproductive algorithm on (χ̃j , ζ̃j) and denote the result
(χ′

j , ζ
′
j);

ii. Pi+1 ← Pi+1 ∪ {(χ′
j , ζ

′
j)};

(f) i← i + 1.
5. Return failure. END.

The positive integer σ is an example of a suicide control, where the GA stops
(suicide) if more than σ populations have been generated. In all cases here, σ is
chosen by experimentation; GA runs that continued beyond σ populations were
unlikely to produce a successful conclusion. By deterministic search we found a
population size of p = 200 and parameter set P = {5, 33, 4, 128, 30, 0} for which
the GA performs well when n = 10. We observed that the GA exhibits the
well-known common characteristic of sensitivity to changes in parameter set; we
consider this in future work. We found an optimal length of one for each word in
our initial population, and now devote the remainder of the paper to our results
of testing the GA and analysis of the data collected.

5.3 Method of Testing

We wished to test the performance of the GA on “randomly generated” instances
of problem (P ). Define the length of an instance of (P ) to be the set of lengths
{l(a), l(x), l(y)} of words a, x, y ∈ Vn used to create that instance. Each of the
words a, x and y are generated by simple random walk on Vn. To generate a word
u of given length k = l(u) firstly generate the unreduced word u1 with unreduced
length l(u1) = k. Then if l(u1) < k, generate u2 of unreduced length k − l(u1),
take u1u2 and repeat this procedure until we produce a word u = u1u2 . . . ur

with l(u) equal to the required length k.
We identified two key input data for the GA: the length of an instance of (P )

and the group rank, n. Two types of tests were performed, varying these data:

1. Test of the GA with long instances while keeping the rank small;
2. Test of the GA with instances of moderate length while increasing the rank.

The algorithms and tests were developed and conducted in GNU C++ on a
Pentium IV 2.53 GHz computer with 1GB of RAM running Debian Linux 3.0.

5.4 Results

Define the generation count to be the number of populations (and so iterations)
required to solve a given instance; see the counter i in Algorithm 2. We present
the results of the tests and follow this in section 5.5 with discussion of the results.
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Table 1. Results of increasing instance lengths for constant rank n = 10

Instance l(a) l(x) l(y) g t σg sec/gen

I1 128 16 16 183 59 68.3 0.323
I2 128 32 32 313 105 198.5 0.339
I3 256 64 64 780 380 325.5 0.515
I4 512 64 64 623 376 205.8 0.607
I5 512 128 128 731 562 84.4 0.769
I6 1024 128 128 1342 801 307.1 0.598
I7 1024 256 256 5947 5921 1525.3 1.004
I8 2048 512 512 14805 58444 3576.4 3.849

Increasing Length. We tested the GA on eight randomly generated instances
(I1)–(I8) with the rank of Vn set at n = 10. The instances (I1)–(I8) were gen-
erated beginning with l(a) = 128 and l(x) = l(y) = 16 for instance (I1) and
progressing to the following instance by doubling the length l(a) or both of the
lengths l(x) and l(y). The GA was run ten times on each instance and the mean
runtime t in seconds and mean generation count g across all runs of that instance
was taken. For each collection of runs of an instance we took the standard devia-
tion σg of the generation counts and the mean time in seconds taken to compute
each population. A summary of results is given in Table 1.

Increasing Rank. These tests were designed to keep the lengths of computed
words relatively small while allowing the rank n to increase. We no longer impose
the condition of l(x) = l(y). Take s to be the arithmetic mean of the lengths of
x and y. Instances were constructed by taking n = 10, 20 or 40 and generating
random a of maximal length 750, random x and y of maximal length 150 and
then reducing the new b = xay to its normal form b.

We then ran the GA once on each of 505 randomly generated instances for
n = 10, with 145 instances for n = 20 and 52 instances for n = 40. We took the
time t in seconds to produce a solution and the respective generation count g.
The data collected is summarised on Table 2 by grouping the length s of instance
into intervals of length fifteen. For example, the range 75–90 means all instances
where s ∈ [75, 90). Across each interval we computed the means g and t along
with the standard deviation σg. We now give a brief discussion of the results and
some conjectures, and then conclude our work.

5.5 Discussion and Conclusion

Firstly, the mean times given on Tables 1 and 2 depend upon the time complexity
of the underlying algebraic operations. We conjecture for n = 10 that these have
time complexity no greater than O(k log k) where k is the mean length of all
words across the entire run of the GA that we wish to reduce.

Table 1 shows we have a good method for solving large scale problems when
the rank is n = 10. By Table 2 we observe the GA operates very well in most
cases across problems where the mean length of x and y is less than 150 and rank
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Table 2. Results of increasing rank from n = 10 (upper rows) to n = 20 (centre rows)
and n = 40 (lower rows)

s 15–30 30–45 45–60 60–75 75–90 90–105 105–120 120–135 135–150

g 227 467 619 965 1120 1740 1673 2057 2412
t 44 94 123 207 244 384 399 525 652

g 646 2391 2593 4349 4351 8585 8178 8103 10351
t 251 897 876 1943 1737 3339 3265 4104 4337

g 1341 1496 2252 1721 6832 14333 14363 - -
t 949 1053 836 1142 5727 10037 11031 - -

at most forty. Fixing s in a given range, the mean generation count increases at
an approximately linearithmic rate as n increases. This seems to hold for all n
up to forty, so we conjecture that for a mean instance of problem (P ) with given
rank n and instance length s the generation count for an average run of the GA
lies between O(sn) and O(sn log n). This conjecture means the GA generation
count depends linearly on s (for brevity, we omit the statistical evidence here).

As n increases across the full range of instances of (P ), increasing numbers of
suicides tend to occur as the GA encounters increasing numbers of local minima.
These may be partially explained by observing traceback. For n large, we are
likely to have many more blocks than for n small (as the likelihood of two
arbitrary generators commuting is larger). While traceback is much more efficient
than a purely random method, there are more chances to read δ between blocks.
Indeed, there may be so many possible δ that it takes many GA iterations to
reduce cost. By experience of this situation, non-asexual methods of reproduction
bring the GA out of some local minima. Consider the following typical GA
output, where the best chromosomes from populations 44 and 64 (before and
after a local minimum) are:

Gen 44 (c = 302) : x = 9 6 5 6 7 4 5 -6 7 5 -3 -3 (l = 12)

y = -20 14 12 14 -20 -20 (l = 6)

Gen 64 (c = 300) : x = 9 8 1 7 6 5 6 7 4 5 -6 7 9 5 -3 -3 (l = 16)

y = 14 12 12 -20 14 15 -14 -14 -16 17 15 14 -20 15 -19 -20 -20 -19
-20 18 -17 -16 (l = 22)

In this case, cost reduction is not made by a small change in chromosome length,
but by a large one. We observe that the cost reduction is made when a chro-
mosome from lower in the ordered population is selected and then mutated, as
the new chromosome at population 64 is far longer. In this case it seems trace-
back acts as a topological sorting method on the generators of the equation E,
giving complex systems of cancellation in E which result in a cost deduction
greater than one. This suggests that finetuning the parameter set to focus more
on reproduction lower in the population and reproduction which causes larger
changes in word length may improve performance. Indeed, [3] conjectures that
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“It seems plausible to conjecture that sexual mating has the purpose to
overcome situations where asexual evolution is stagnant.”

Bremermann [3, p. 102]

This implies the GA performs well in comparison to asexual hillclimbing meth-
ods. Indeed, this is the case in practice: by making appropriate parameter choices
we may simulate such a hillclimb, which experimentally encounters many more
local minima. These local minima seem to require substantial changes in the
form of χ and ζ (as above); this cannot be done by mere asexual reproduction.

Meanwhile, coupled with a concept of “growing” solutions, we have at least for
reasonable values of n an indication of a good underlying deterministic algorithm
based on traceback. Indeed, such deterministic algorithms were developed in [2]
as the result of analysis of experimental data in our work. This hints that the
search space has a “good” structure and may be exploited by appropriately
sensitive GAs and other artificial intelligence technologies in our framework.
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Abstract. This paper presents a simple algorithm for the job shop scheduling 
problem that combines the local search heuristic GRASP with a branch-and-
bound exact method of integer programming. The proposed method is 
compared with similar approaches and leads to better results in terms of 
solution quality and computing times. 

1   Introduction 

The job-shop scheduling problem has been known to the operations research 
community since the early 50’s [16]. It is considered a particularly hard combinatorial 
optimization problem of the NP-hard class [15] and it has numerous practical 
applications; which makes it an excellent test problem for the quality of new 
scheduling algorithms. These are main reasons for the vast bibliography on both exact 
and heuristic procedures applied to this scheduling problem. The paper of Jain and 
Meeran [16] includes an exhaustive survey not only of the evolution of the definition 
of the problem, but also of all the techniques applied to it. 

Recently a new class of procedures that combine local search based (meta) 
heuristics and exact algorithms have been developed. Fernandes and Lourenço [13] 
designated these methods by Optimized Search Heuristics (OSH). 

In this paper we present a simple OSH procedure for the job-shop scheduling 
problem that combines a GRASP algorithm with a branch-and-bound method. 

We first introduce the job-shop scheduling problem. We present a short review of 
existent OSH methods applied to this problem and proceed describing the procedure 
developed. Computational results are presented along with comparisons to other 
procedures. 

2   The Job-Shop Scheduling Problem 

The job-shop scheduling problem considers a set of jobs to be processed on a set of 
machines. Each job is defined by an ordered set of operations and each operation is 
assigned to a machine with a predefined constant processing time (preemption is not 
allowed). The order of the operations within the jobs and its correspondent machines 
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are fixed a priori and independent from job to job. To solve the problem we need to 
find a sequence of operations on each machine respecting some constraints and 
optimizing some objective function. It is assumed that two consecutive operations of 
the same job are assigned to different machines, each machine can only process one 
operation at a time and that different machines can not process the same job 
simultaneously. We will adopt the maximum of the completion time of all jobs – the 
makespan – as the objective function. 

Formally let { }1,,0 += oO K  be the set of operations with 0 and 1+o  being the 

dummy operations representing the start and end of all jobs, respectively. Let M  be 
the set of machines, A  the set of arcs between consecutive operations of each job and 

kE  the set of all possible pairs of operations processed by machine k , with Mk ∈ . 

We define 0>ip  as the constant processing time of operation i  and it  is the 

variable representing the start time of operation i . The following mathematical 
formulation for the job shop scheduling problem is widely used: 

The constraints in (1) state the precedences of operations within jobs and also that 
no two operations of the same job can be processed simultaneously (because 0>ip ). 

Expressions (3) are named “capacity constraints” and assure there are no overlaps of 
operations on the machines. 

A common representation for the job-shop problem is the disjunctive graph 
),,( EAOG =  [22]; where O  is the node set, corresponding to the set of operations; 

A  is the set of arcs between consecutive operations of the same job, and E  is the set 
of edges between operations processed by the same machine. For every node j  of 

{ }1,0/ +oO  there are unique nodes i  and l  such that arcs ),( ji and ),( lj  are 

elements of A . Node i  is called the job predecessor of node j  - )( jjp  and l  is the 

job successor of j  - )( jjs . Finding a solution to the job-shop scheduling problem 

means replacing every edge of the respective graph with a directed arc, constructing 
an acyclic directed graph ),( SAODS ∪=  where U

k
kSS =  corresponds to an acyclic 

union of sequences of operations for each machine k . The optimal solution is the one 
represented by the graph SD  having the critical path from 0  to 1+o with the 

smallest length or makespan. 

)(JSSP     

 1min +ot    

..ts  
iij ptt ≥−  Aji ∈),(  (1) 

 0≥it  Oi ∈  (2) 

 jjiiij pttptt ≥−∨≥−  MkEji k ∈∈ ,),(  (3) 

Fig. 1. Mathematical formulation for the Job-Shop Problem 
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3   Review of Optimized Search Heuristics 

In the literature we can find a few works combining metaheuristics with exact 
algorithms applied to the job shop scheduling problem, designated as Optimized 
Search Heuristics (OSH) by Fernandes and Lourenço [13]. Different combinations of 
different procedures are present in the literature, and there are several applications of 
the OSH methods to different problems. 

Chen et al. [8] and Denzinger and Offermann [11] design parallel algorithms that 
use asynchronous agents information to build solutions; some of these agents are 
genetic algorithms, others are branch-and-bound algorithms. 

Tamura et al. [27] design a genetic algorithm where the fitness of each individual, 
whose chromosomes represent each variable of the integer programming formulation, 
is the bound obtained solving Lagrangian relaxations. 

The works [1], [3], [7] and [4] use an exact algorithm to solve a sub problem 
within a local search heuristic for the job shop scheduling. Caseau and Laburthe [7] 
build a local search where the neighborhood structure is defined by a subproblem that 
is solved exactly using constraint programming. 

Applegate and Cook [3] develop the shuffle heuristic. At each step of the local 
search the processing orders of the jobs on a small number of machines is fixed, and a 
branch-and-bound algorithm completes the schedule. The shifting bottleneck 
heuristic, due to Adams, Balas and Zawack [1], is an iterated local search with a 
construction heuristic that uses a branch-and-bound to solve the subproblems of one 
machine with release and due dates. Balas and Vazacopoulos [4] work with the 
shifting bottleneck heuristic and design a guided local search, over a tree search 
structure, that reconstructs partially destroyed solutions. 

Lourenço [18] and Lourenço and Zwijnenburg [19] use branch-and-bound 
algorithms to strategically guide an iterated local search and a tabu search algorithm. 
The diversification of the search is achieved applying a branch-and-bound method to 
solve a one-machine scheduling problem subproblem obtained from the incumbent 
solution. 

The interesting work done by Danna, Rothberg and Le Pape [9] “applies the spirit 
of metaheuristics” in an exact algorithm. Within each node of a branch-and-cut tree, 
the solution of the linear relaxation is used to define the neighborhood of the current 
best feasible solution. The local search consists in solving the restricted MIP problem 
defined by the neighborhood. 

4   GRASP and Branch-and-Bound 

We developed a simple optimized search heuristic that combines a GRASP algorithm 
with a branch-and-bound method. The branch-and-bound method is used within the 
GRASP to solve subproblems of one machine scheduling. 
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GRASP [12] is an iterative process where each iteration consists of two steps: a 
randomized building step of a greedy nature and a local search step. At the building 
phase, a solution is constructed joining one element at a time. Each element is 
evaluated by a greedy function and incorporated (or not) in a restricted candidate list 
(RCL). The element to join the solution is chosen randomly from the RCL. Each time 
a new element is added to the partial solution the algorithm proceeds with the local 
search step and the local optimum updates the current solution. The all process is 
repeated until the solution is complete. 

4.1   Building Step 

We define the sequence of operations at each machine as the elements to join the 
solution, and the makespan as the greedy function to evaluate them. In order to build a 
restricted candidate list of this elements (RCL), we solve exactly all the one machine 
problems and identify the best ( )f  and worst ( )f  makespans. A machine k  is 

included in the RCL if ( )fffxf k −−≥ α)( , where )( kxf  is the makespan of 

machine k  and α  is a uniform random number in ( )1,0 . This semi-greedy 

randomised procedure is biased towards the machine with the higher makespan, the 
bottleneck machine, in the sense that machines with low values of makespan have less 
probability of being included in the restricted candidate list. 

To solve the one machine scheduling problems we use the branch-and-bound 
algorithm of Carlier [6]. The objective function of the algorithm is to minimize the 
completion time of all jobs. This one-machine scheduling problem considers that, 
associated to each job j , there are the following values (obtained from the current 

solution): the processing time ( )jp , a release date ( )jr  and an amount of time ( )jq  

that the job stays in the system after being processed. 
At each node of the branch-and-bound tree the upper bound is computed using the 

algorithm of Schrage [23]. This algorithm gives priority to higher values of the tails 
( )jq  when scheduling released jobs. We break ties preferring jobs with larger 

processing times. 
The lower bound is computed as in [6]. The value of the solution where 

preemption is allowed, is used to strengthen this lower bound. We introduce a slight 
modification, forcing the lower bound of a node never to be smaller than the one of its 
father in the tree. 

At the first iteration we consider the graph ),( AOD =  (without the edges 

connecting operations that share the same machine) to compute release dates and tails. 
Incorporating a new machine in the solution means adding to the graph the arcs 
representing the sequence of operations in that machine. In terms of the mathematical 
formulation, this means choosing one of the inequalities of the disjunctive constraints 
(3) correspondent to the machine. We then update the makespan of the partial solution 
and the release dates and tails of unscheduled operations using the algorithm of 
Taillard [26]. 
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4.2   Local Search 

In order to build a simple local search algorithm we need to design a neighborhood 
structure, the way to inspect the neighborhood of a given solution, and a procedure to 
evaluate the quality of each solution. 

We use a neighborhood structure very similar to the NB neighborhood of 
Dell'Amico and Trubian [10] and the one of Balas and Vazacopoulos [4]. To describe 
the moves that define this neighborhood we use the notion of blocks of critical 
operations. A block of critical operations is a maximal ordered set of consecutive 
operations of a critical path, sharing the same machine. Borrowing the nomination of 
Balas and Vazacopoulos [4] we speak of forward and backward moves over forward 
and backward critical pairs of operations. Let ),( jiL  denote the length of the critical 

path from node i  to node j . 

Two operations u  and v  form a forward critical pair ( )vu,  if: a) they both belong to 

the same block; b) v  is the last operation of the block; c) operation )(vjs  also belongs 

to the same critical path; d) the length of the critical path from v  to 1+o  is not less than 
the length of the critical path from )(ujs  to 1+o  ( )1),(()1,( +≥+ oujsLovL ). 

Two operations u  and v  form a backward critical pair ( )vu,  if: a) they both belong 

to the same block; b) u  is the first operation of the block; c) operation )(ujp  also 

belongs to the same critical path; d) the length of the critical path from 0  to u , 
including the processing time of u , is not less than the length of the critical path from 0 
to )(vjp , including the processing time of )(vjp  ( )))(,0(),0( )(vjpu pvjpLpuL +≥+ ). 

Conditions d) guarantee that all moves lead to feasible solutions [4]. 
A forward move is executed by moving operation u  to be processed immediately 

after operation v . A backward move is executed by moving operation v  to be 
processed immediately before operation u . 

When inspecting the neighborhood ( ),( kMxN ) of a given solution x  with kM  

machines already scheduled, we stop whenever we find a neighbor with a best 
evaluation value than the makespan of x . 

To evaluate the quality of a neighbor of a solution x , produced by a move over a 
critical pair ( )vu, , we need only to compute the length of all the longest paths through 

the operations that were between u  and v  in the critical path of solution x . This 
evaluation is computed using the algorithm described in [4]. 

4.3   GRASP_B&B 

Let runs  be the total number of runs, M  the set of machines and )(xf  the 

makespan of a solution x . The procedure GRASP_B&B can be generally described 
by the pseudo-code in Fig. 2: 
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GRASP_B&B (runs) 
(1) mM ,,1:
(2) for 1r to runs 
(3) :x
(4) MK :
(5) while K
(6)    foreach Kk
(7)             )(&_: kBBCARLIERxk
(8) )(:* KSEMIGREEDYk
(9) *: kxxx
(10) )(:)( xTAILLARDxf

(11) *\: kKK
(12)  if 1MK
(13)   )\,(: KMxHLOCALSEARCx

(14)  if *x  not initialized or *)( fxf

(15)     xx :*

(16)     )(:* xff

(17) return *x  

Fig. 2. Pseudo-code of algorithm GRASP_B&B 

5   Computational Results 

We have tested the algorithm GRASP_B&B (coded in C) on a Pentium 4 CPU 2.80 
GHz, on the benchmark instances abz5-9 [1], ft6, ft10, ft20 [14], la01-40 [17],  

 

 

Fig. 3. Boxplots of UBRE  achieved with GRASP_B&B for the ft instances. ft06: (6*6); ft10: 

(10*10); ft20: (20*5). 
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Fig. 4. Boxplots of UBRE  achieved with GRASP_B&B for the orb instances. orb01-10: 

(10*10). 

 
 

  

Fig. 5. Boxplots of UBRE  achieved with GRASP_B&B for the la instances. la01-05: (10*5); 

la06-10: (15*5); la11-15: (20*5); la16-20: (10*10); la21-25: (15*10); la26-30: (20*10); la31-35: (30*10); 
la36-40: (15*15). 

orb01-10 [3], swv01-20 [24], ta01-70 [25] and yn1-4 [28]. The dimension of each 
instance is defined as the number of jobs times the number of machines ( mn * ). 
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Because of space limitations, in this work we will only present the results for 
instances ft6, ft10, ft20, la01-40 and orb01-10. 

We show the results of running the algorithm 100 times for each instance 

presenting boxplots (figures 3 – 5) of UBRE , the percentage of relative error to the 

best known upper bound (UB ), calculated as follows: 

( ) ( )
UB

UBxf
xREUB

−×= %100  

We gathered the values of the upper bounds from [16], [20] and [21]. 
The boxplots show that the quality achieved is more dependent on the ratio mn /  

than on the absolute numbers of jobs and machines. There is no big dispersion of the 
solution values achieved by the algorithm in the 100 runs executed, except maybe for 
instance la3. The number of times the algorithm achieves the best values reported is 
high enough, so these values are not considered outliers of the distribution of the 
results, except for instances ft06 and la38. On the other end, the worse values occur 
very seldom and are outliers for the majority of the instances. 

Although this is a very simple (and fast) algorithm, the best values are not worse 
than the best known upper bound for 22 of the 152 instances used in this study. 

5.1   Comparison to Other Algorithms 

GRASP_B&B is a simple GRASP algorithm with a construction phase very similar to 
the one of the shifting bottleneck procedure. Therefore we show comparative results to 
two other procedures designed for the job shop problem; a simple GRASP procedure of 
Binato et al. [5] and the shifting bottleneck procedure of Adams et al. [1]. 

The building block of the construction phase of the GRASP in [5] is a single 
operation of a job. In their computational results, they present the time in seconds per 
thousand iterations (an iteration is one building phase followed by a local search) and 
the thousands of iterations. For a comparison purpose we multiply these values to get 
the total computation time. For GRASP_B&B we present the time to the best solution 
found (btime) and the total time of all runs (ttime), in seconds. As the tables show, our 
algorithm is much faster. Whenever our GRASP_B&B achieves a solution not worse 
than theirs, we present the respective value in bold. This happens for 25 of the 53 
instances whose results where compared. 

Table 1. Comparing GRASP_B&B with (Binato et al 2001) and (Adams et al. 1988) - ft 
instances 

name GRASP_B&B btime(s) ttime (s) GRASP  time (s) Shifting 
Bottleneck 

time (s) 

ft06 55 0.1274 0.1400 55 70 55 1.5 

ft10 970 0.5800 1.0000 938 261290 1015 10.1 

ft20 1283 0.0094 0.4690 1169 387430 1290 3.5 
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Table 2. Comparing GRASP_B&B with (Binato et al 2001) and (Adams et al. 1988) - la instances 

name GRASP_B&B btime (s) ttime (s) GRASP time (s) Shifting 
Bottleneck 

time (s) 

la01 666 0.0017 0.1720 666 140 666 1.26 

la02 667 0.0437 0.1560 655 140 720 1.69 

la03 605 0.0066 0.2190 604 65130 623 2.46 

la04 607 0.0051 0.1710 590 130 597 2.79 

la05 593 0.0011 0.1100 593 130 593 0.52 

la06 926 0.0017 0.1710 926 240 926 1.28 

la07 890 0.002 0.2030 890 250 890 1.51 

la08 863 0.0149 0.2970 863 240 868 2.41 

la09 951 0.0028 0.2810 951 290 951 0.85 

la10 958 0.0014 0.1410 958 250 959 0.81 

la11 1222 0.0027 0.2660 1222 410 1222 2.03 

la12 1039 0.0027 0.2650 1039 390 1039 0.87 

la13 1150 0.0038 0.3750 1150 430 1150 1.23 

la14 1292 0.0022 0.2180 1292 390 1292 0.94 

la15 1207 0.0453 0.9060 1207 410 1207 3.09 

la16 1012 0.0221 0.7350 946 155310 1021 6.48 

la17 787 0.0843 0.7660 784 60300 796 4.58 

la18 854 0.3 0.7500 848 58290 891 10.2 

la19 861 0.4554 0.9690 842 31310 875 7.4 

la20 920 0.0813 0.8130 907 160320 924 10.2 

la21 1092 0.1023 2.0460 1091 325650 1172 21.9 

la22 955 0.9884 1.7970 960 315630 1040 19.2 

la23 1049 1.7388 1.8900 1032 65650 1061 24.6 

la24 971 0.627 1.8440 978 64640 1000 25.5 

la25 1027 0.5388 1.7960 1028 64640 1048 27.9 

la26 1265 3.0375 3.3750 1271 109080 1304 48.5 

la27 1308 0.1781 3.5620 1320 110090 1325 45.5 

la28 1301 0.15 3.0000 1293 110090 1256 28.5 

la29 1248 0.857 3.2960 1293 112110 1294 48 

la30 1382 0.8653 3.3280 1368 106050 1403 37.8 

la31 1784 0.0702 7.0160 1784 231290 1784 38.3 

la32 1850 0.5612 6.2350 1850 241390 1850 29.1 

la33 1719 1.265 7.9060 1719 241390 1719 25.6 

la34 1721 3.8093 8.2810 1753 240380 1721 27.6 

la35 1888 0.2844 5.6880 1888 222200 1888 21.3 

la36 1325 0.0853 4.2650 1334 115360 1351 46.9 

la37 1479 4.0295 4.7970 1457 115360 1485 6104 

la38 1274 0.7153 5.1090 1267 118720 1280 57.5 

la39 1309 2.9835 4.4530 1290 115360 1321 71.8 

la40 1291 3.5581 5.3910 1259 123200 1326 76.7 
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Table 3. Comparing GRASP_B&B with (Binato et al 2001) - orb instances 

name GRASP_B&B btime (s) ttime (s) GRASP  time (s) 

orb01 1145 0.0296 0.9850 1070 116290 

orb02 918 0.0953 0.9530 889 152380 

orb03 1098 0.335 1.0150 1021 124310 

orb04 1066 0.8213 1.1250 1031 124310 

orb05 911 0.105 0.8750 891 112280 

orb06 1050 0.4812 1.0460 1013 124310 

orb07 414 0.2764 1.0630 397 128320 

orb08 945 0.3093 1.0310 909 124310 

orb09 978 0.2809 0.9060 945 124310 

orb10 991 0.2276 0.8430 953 116290 

 

The comparison between the shifting bottleneck procedure [1] and the 
GRASP_B&B is presented in tables 1 and 2. Comparing the computation times of 
both procedures, our GRASP is slightly faster than the shifting bottleneck for smaller 
instances. Given the distinct computers used in the experiments we would say that 
this is not meaningful, but the difference does get accentuated as the dimensions 
grow. Whenever GRASP_B&B achieves a solution better than the shifting bottleneck 
procedure, we present the respective value underlined. This happens in 25 of the 43 
instances whose results where compared, and in 16 of the remaining 18 instances the 
best value found was the same. 

6   Conclusions 

We have designed a very simple optimized search heuristic, the GRASP_B&B. It is 
intended to be a starting point for a more elaborated metaheuristic. We have 
compared it to other base procedures used within more complex algorithms; namely a 
GRASP [5], which is the base for a GRASP with path-relinking procedure [2], and 
the shifting bottleneck procedure, incorporated in the successful guided local search 
[4]. The comparison to the GRASP [5] shows that our procedure is much faster than 
theirs. The quality of their best solution is slightly better than ours in 60% of the 
instances tested. When comparing GRASP_B&B with the shifting bottleneck, ours is 
still faster, and it achieves better solutions, except for 2 of the comparable instances. 
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Abstract. The Traveling Salesman Problem (TSP) is a well-known NP-
hard combinatorial optimization problem, for which a large variety of
evolutionary algorithms are known. However, these heuristics fail to find
solutions for large instances due to time and memory constraints. Here,
we discuss a set of edge fixing heuristics to transform large TSP prob-
lems into smaller problems, which can be solved easily with existing
algorithms. We argue, that after expanding a reduced tour back to the
original instance, the result is nearly as good as applying the used solver
to the original problem instance, but requiring significantly less time to
be achieved. We claim that with these reductions, very large TSP in-
stances can be tackled with current state-of-the-art evolutionary local
search heuristics.

1 Introduction

The Traveling Salesman Problem (TSP) is a widely studied combinatorial opti-
mization problem, which is known to be NP-hard [1].

Let G = (V, E, d) be an edge-weighted, directed graph, where V is the set of
n = |V | vertices, E ⊆ V × V the set of of (directed) edges and d : E → R

+

a distance function assigning each edge e ∈ E a distance d(e). A path is a
list (u1, . . . , uk) of vertices ui ∈ V (i = 1, . . . k) holding (ui, ui+1) ∈ E for
i = 1, . . . , k − 1. A Hamiltonian cycle in G is a path p = (u1, . . . , uk, u1) in G,
where k = n and

⋃k
i=1 ui = V (each vertex is visited exactly once except for u1).

The TSP’s objective is to find a Hamiltonian cycle t for G that minimizes the
cost function C(t) =

∑k−1
i=1 d((ui, ui+1)) + d((uk, u1)) (weights of the edges in t

added up). Depending on the distance function d, a TSP instance may be either
symmetric (for all u1, u2 ∈ V holds d((u1, u2)) = d(u2, u1))) or asymmetric
(otherwise). Most applications and benchmark problems are Euclidean, i. e., the
vertices V correspond to points in an Euclidean space (mostly 2-dimensional)
and the distance function represents an Euclidean distance metric. The following
discussion focuses on symmetric, Euclidean problem instances.

Different types of algorithms for the TSP are known, such as exact algorithms
[2,3] or local search algorithms [4]. Among the best performing algorithms are
those utilizing Lin-Kernighan local search within an evolutionary framework such

C. Cotta and J. van Hemert (Eds.): EvoCOP 2007, LNCS 4446, pp. 72–83, 2007.
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as Iterated Lin-Kernighan [5] or memetic algorithms [6,7]. Even exact algorithms
like Branch & Cut rely on these heuristics. The heuristics used in Concorde [8]
to find near-optimum solutions to large TSP instances is essentially a memetic
algorithm using the Lin-Kernighan (LK) heuristics as local search and tour-
merging [9] for recombination [10]. As the TSP is NP-hard, computation time is
expected to grow exponentially with the instance size. E. g. for a TSP instance
with 24 978 cities, even sophisticated heuristic algorithms such as Helsgaun’s
LK (LK-H) [11] require several hours to find solutions within 1% distance to the
optimum. For the same instance, an exact algorithm required 85 CPU years to
prove a known tour’s optimality [12].

The problem of time consumption can be approached by distributing the
computation among a set of computers using distributed evolutionary algorithms
(DEA) [13,14]. Another problem when solving extremely large TSP instances
such as the World TSP [15] is an algorithm’s memory consumption, as data
structures such as neighbor or candidate lists have to be maintained. We address
this problem in this paper by proposing different edge fixing heuristics, which
may reduce the problem to a size suitable for standard TSP solvers. In the
general fixing scheme heuristics select edges of an existing tour for fixing; paths
of fixed edges are merged into a single fixed edge reducing the instance size. Fixed
edges are ‘tabu’ for the TSP solver, which is applied to the reduced instance in
a second step. Finally, the optimized tour is expanded back to a valid solution
for the original problem by releasing fixed edges and paths.

The remainder of this section discusses related work from Walshaw. In Sect. 2
problem reduction techniques based on fixing edges are discussed. A set of TSP
instances is analyzed in Sect. 3 regarding the discussed fixing heuristics. Sect. 4
discusses the results when applying the fixing heuristics to an evolutionary local
search. Sect. 5 summarizes our findings.

1.1 Related Work

Only limited research regarding the reduction of TSP instances in relation with
evolutionary local search has been done. The primary related work to our concept
is the multilevel approach by Walshaw [16], which has been applied to several
graph problems including the TSP [17]. Basically, multilevel algorithms work as
follows: In the first phase a given graph is recursively coarsened by matching and
merging node pairs generating smaller graphs at each level. The coarsening stops
with a minimum size graph, for which an optimal solution can easily be found.
In the second phase, the recursion backtracks, uncoarsening each intermediate
graph and finally resulting in a valid solution of the original problem. In each un-
coarsening step, the current solution is refined by some optimization algorithm.
It has been reported that this strategy results in better solutions compared to
applying the optimization algorithm to the original graph only. When uncoars-
ening again, the optimization algorithm can improve the current level’s solution
based on an already good solution found in the previous level. As the coarsening
step defines the solution space of a recursion level, its strategy is decisive for the
quality of the multilevel algorithm.
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In [17] the multilevel approach has been applied to the TSP using a CLK
algorithm [18] for optimization. Here, a multilevel variant (MLCN/10LK) of CLK
gains better results than the unmodified CLK, being nearly 4 times faster. The
coarsening heuristics applied to the TSP’s graph matches node pairs by adding
a fixed edge in between. In each step, nodes are selected and matched with
their nearest neighbor, if feasible. Nodes involved in an (unsuccessful) matching
may not be used in another matching at the same recursion level to prevent the
generation of sub-tours. Recursion stops when only two nodes and one connecting
edge are left.

2 Problem Reduction by Fixing Edges

To reduce a TSP instance’s size different approaches can be taken. Approaches
can be either node-based or edge-based. At a different level, approaches can be
based only on a TSP instance or using an existing solution, respectively.

A node-based approach may work as follows: Subsets of nodes can be merged
into meta-nodes (cluster) thus generating a smaller TSP instance. Within a
meta-node a cost-effective path connecting all nodes has to be found. The path’s
end nodes will be connected to the edges connecting the meta-node to its neigh-
bor nodes building a tour through all meta-nodes. Problems for this approach
are (i) how to group nodes into meta-nodes (ii) how to define distances between
meta-nodes (iii) which two nodes of a cluster will have outbound edges. In an
edge-based approach, a sequence of edges can be merged into a meta-edge, called
a fixed path. Subsequently, the inner edges and nodes are no longer visible and
this meta-edge has to occur in every valid tour for this instance. Compared to the
node-based approach, problems (ii) and (iii) do not apply, as the original node
distances are still valid and a fixed path has exactly two nodes with outbound
edges. So, the central problem is how to select edges merged into a meta-edge.
Examples for both node-based and edge-based problem reductions are shown in
Fig. 1.

Edges selected for merging into meta-edges may be chosen based on instance
information only or on a tour’s structure. The former approach may select from
an instance with n nodes any of the n(n−1)

2 edges for a merging step, the latter
approach reuses only edges from a given tour (n edges). The tour-based ap-
proach’s advantage is a smaller search space and the reuse of an existing tour’s
inherent knowledge. Additionally, this approach can easily be integrated into
memetic algorithms. A disadvantage is that the restriction to tour edges will
limit the fixing effect especially in early stages of a local search when the tour
quality is not sufficient.

Walshaw’s multilevel TSP approach focuses on an edge-based approach con-
sidering the TSP instance only. In this paper, we will discuss edge-based ap-
proaches, too, but focus on the following tour-based edge fixing heuristics:

Minimum Spanning Tree (MST). Tour edges get fixed when they occur in a
minimum spanning tree (MST) for the tour’s instance. This can be motivated
by the affinity between the TSP and the MST problem [19], as the latter
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(a) (b) (c) (d) (e)

Fig. 1. Examples of node-based and edge-based problem reductions. Starting from the
original problem instance (a), the node-based approach assigns node sets to clusters
(marked by dashed boxes) and defines a spanning path within each cluster (b). Subse-
quently, in (c) only representatives of the clusters have to be considered (black nodes,
here arbitrarily located at each cluster’s center), whereas the original nodes (white) can
be ignored. For the edge-based approach, edges to be fixed have to be selected (dotted
lines in (d)). Subsequently, paths can be merged to single edges and inner path nodes
(white) may be ignored (e).

one can be used to establish a lower bound for the TSP. However, global
instance knowledge in form of an MST (complexity of O(m + n log n) for m
edges using Fibonacci heaps) has to be available in advance.

Nearest Neighbor (NN). As already exploited by the nearest neighbor tour
construction heuristics, edges between a node and it’s nearest neighbor are
likely to occur in optimal tours thus being promising fixing candidates, too.
Determining nearest neighbor lists may be computationally expensive (com-
plexity of O(n2 log n)), but can be sped up e. g. by using kd-trees [20,21].

Lighter than Median (<M). Edges that length is below the median over all
edges’ lengths in a tour are selected, as it is beneficial to keep short edges
by fixing them and leaving longer edges for further optimization. The most
expensive operation of this approach is the necessary sorting of all tour edges
(complexity of O(n log n)). There may be tours that have very few different
edge lengths resulting in a small number of edges that are strictly shorter
than the median.

Close Pairs (CP). Here, a tour edge’s length is compared to the lengths of
the two neighboring edges. The edge will be fixed if it is shorter than both
neighboring edges and the edge’s nodes therefore form a close pair. This
approach considers only local knowledge (edge and its two neighbor edges)
allowing it to be applied even on large instances. It is expected to work well
in graphs with both sparse and dense regions.

The actual number of edges selected by one of the above heuristics during a
fixing step depends on the current tour and the problem instance. For the first
two heuristics (MST and NN) it can be expected that more edges will be selected
with better tours. For the lighter than median variant (<M) and the close pairs
variant (CP) at most half of all edges may be selected. In the example in Fig. 2,
solid lines represent tour edges and dotted lines represent edges of the minimal
spanning tree (MST). Out of 7 tour edges, 5 edges are MST edges, too, 4 edges
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NN

NN
<M
CP

<M NN
<M
CP

NN
CP

Tour Edge

MST Edge

Fig. 2. Example tour and minimum spanning tree with different edge properties high-
lighted. Tour and MST edges are drawn in different line styles, properties nearest neigh-
bor (NN), lighter than median (<M), and close pairs (CP) are shown as markings next
to the edges.

connect nearest neighbors (NN), 3 edges connect close node pairs (CP) and 3
edges are lighter than the edge weight median (<M).

For asymmetric TSP (ATSP) instances edge fixation heuristics can be de-
veloped, too, but this approach has not been pursued here. Applying the fixa-
tions heuristics presented here to ATSP instances poses new questions such as
determining the direction when the fixation heuristics is based on undirected
knowledge (e. g. from an MST).

3 Analysis of TSP Instances

The tests in this section were performed to evaluate if the edge selection strate-
gies discussed in this paper are applicable for edge-fixation heuristics. Probabili-
ties of each selection strategy to selected a tour edge and the probabilities if the
selected edge is part of an optimal tour were evaluated. These criteria describe
the quantity and quality, respectively, of a selection strategy.

For our analysis, five TSP instances have been selected: From the TSPLIB
collection [22] instances brd14051, d15112, and d18512 and from a collection
of national TSPs [23] instances it16862, and sw24978 were taken (numbers in
the instances’ names denote the problem size). These instances were selected,
because they are among the largest instances an optimal solution is known for.
The choice of instances was limited by the availability of optimal or at least high
quality tours which were used to to evaluate the tours found in our experiments.
Preferably, larger TSPLIB instances and benchmark instances from the DIMACS
challenge [24] (E series instances) would have been included, too.

For each TSP instance 20 nearest-neighbor tours were constructed. Each of
these tours was optimized to a local optimum by the local search heuristics
2-opt, 3-opt, Lin-Kernighan (LK-opt), and LK-Helsgaun (LK-H), respectively.
For Helsgaun’s LK parameter MAX TRIALS was set to 100 (instead of number
of cities). Totally, 600 tours were constructed to test the fixing heuristic when
applied to tours of different quality levels.
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Table 1. Probabilities (in percent) for edges in a tour to match certain criteria. The
data is grouped by TSP instance and tour type. The eight left most columns contain the
original and the conditional probabilites for the four edge fixation heuristics discussed
in this paper.
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1
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0
5
1

NN 59.12 70.44 73.22 58.29 74.82 54.64 71.07 40.11 71.68
2-opt 65.13 73.58 75.78 60.39 77.33 53.28 74.67 38.49 75.70
3-opt 70.49 76.20 78.47 62.73 79.70 52.17 77.77 37.14 78.83
LK-opt 77.93 77.53 83.07 62.99 83.99 52.16 82.78 35.03 83.55
LK-H 92.44 76.59 93.93 61.18 94.08 48.61 93.45 31.75 93.88
optimal 100.00 75.33 100.00 59.43 100.00 47.83 100.00 30.34 100.00

d
1
5
1
1
2

NN 61.21 71.33 74.09 59.16 75.89 54.86 71.73 39.88 73.37
2-opt 66.06 73.69 75.99 60.58 77.73 54.22 74.36 38.50 76.24
3-opt 71.07 76.04 78.61 62.99 79.91 53.67 77.63 37.70 79.07
LK-opt 77.50 77.01 82.63 63.12 83.71 52.38 82.03 35.83 83.09
LK-H 92.11 76.15 93.51 61.33 93.83 50.65 93.05 32.59 93.67
optimal 100.00 74.70 100.00 59.61 100.00 49.79 100.00 31.25 100.00

i
t
1
6
8
6
2

NN 61.35 72.20 74.44 60.06 76.04 52.60 70.59 32.56 73.59
2-opt 66.72 74.66 76.64 61.90 78.10 53.82 74.34 30.56 76.29
3-opt 71.87 76.94 79.33 64.34 80.37 54.63 79.06 29.08 79.34
LK-opt 77.91 77.64 83.07 64.23 84.03 53.35 83.12 27.14 83.28
LK-H 91.56 76.58 93.10 62.52 93.22 51.16 92.70 24.07 93.29
optimal 100.00 75.07 100.00 60.59 100.00 49.92 100.00 22.89 100.00

d
1
8
5
1
2

NN 60.68 71.58 73.99 59.19 75.71 55.22 72.11 39.14 73.05
2-opt 65.88 74.18 76.01 60.77 77.62 53.83 75.06 37.94 76.13
3-opt 70.80 76.68 78.40 63.05 79.74 53.23 77.94 37.15 78.88
LK-opt 77.95 77.76 82.95 63.15 83.97 52.94 82.73 35.05 83.38
LK-H 92.70 76.66 94.08 61.16 94.22 50.03 93.67 31.72 94.01
optimal 100.00 75.34 100.00 59.41 100.00 49.06 100.00 30.34 100.00

s
w
2
4
9
7
8

NN 65.39 76.00 75.24 65.38 75.78 42.56 74.30 24.96 74.83
2-opt 68.18 75.47 76.95 64.14 77.67 41.14 75.22 25.04 76.94
3-opt 72.26 76.91 79.09 65.45 79.67 41.82 77.55 24.30 79.11
LK-opt 77.22 77.00 82.38 64.46 83.08 41.19 80.97 23.18 82.45
LK-H 90.33 76.01 92.06 62.90 92.13 40.31 90.66 20.54 92.56
optimal 100.00 74.38 100.00 60.85 100.00 39.15 100.00 19.36 100.00

Each heuristics’ selection scheme was applied to the set of 600 tours. Average
values over each set of 20 tours with the same setup were taken and summarized
in Tab. 1. Here, the first column sets the instance under consideration. The
‘Type’ column determines in which local optimum the tours are located. Column
‘P(OPT)’ shows for a local optimal tour the percentage of edges that also occur
in the known global optimal tour. Columns ‘P(MST)’, ‘P(NN)’, ‘P(<M)’, and
‘P(CP)’ contain the probability that a edge from a local optimal tour matches
the given property. Columns ‘P(OPT|MST)’, ‘P(OPT|NN)’, ‘P(OPT|<M)’, and
‘P(OPT|CP)’ contain conditional probabilities, that an edge in a local optimal
tour is part of the global optimal tour, given that it matches the properties MST,
NN, <M, or CP, respectively.

Column ‘P(OPT)’ shows the percentage of edges from a local optimal tour
occurring in the global optimal tour. The better a tour construction and improve-
ment heuristics works, the more edges the resulting tour has in common with
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the optimal tour. Whereas tours constructed by a nearest neighbor construction
heuristics share about 60–65% of all edges with optimal tours (depending on
the instance), tours found by subsequently applied local search algorithms are
better, ranging from 65–70% for 2-opt to more than 90% for LK-H-opt tours.

As each edge selection strategy has different criteria how to select edges, they
differ in the number of optimal edges. The most edges get chosen by the MST
strategy (column ‘P(MST)’) selecting about 70–80% of all tour edges. Other
strategies select less edges: From NN with 60–65% down to <M and CP with 45–
55% and 25–40% of all edges, respectively. Interestingly, the number of selected
edges decreases for all instances and all selection strategies when applied to high
quality tours such as ‘LK-H’ and optimal tours.

However, the quantity (number of edges selected for fixing) is not the only
criterion to rate a selection strategy. Selected edges were checked whether they
occur in the corresponding known optimal tour, too. When applying a fixing
heuristics to a sub-optimal tour, a good heuristics should more likely select edges
that occur in the optimal tour, too, rather than edges that do not occur in the
optimal tour. Therefore we were interested in the probability that a sub-optimal
tour’s edge selected by a edge selection strategy would actually be contained in
an optimal tour (‘true positive’) rather than being a ‘false positive’.

Edge selection strategies tend to be more successful for better tours. For every
selection strategy, the percentage of correctly selected edges (edges that occur in
the optimal tour, too) increases with the tour quality. E. g. for nearest neighbor
tours of instance it16862, only about 74.4% of all selected edges are optimal tour
edges, too, but for LK-H optimal tours, the percentage of selected edges is much
higher (93.1%). Comparing selection strategies, the nearest neighbor selection
strategy (NN) has the best probability values for all combinations except for
three cases, where the close pairs strategy (CP) is more likely to find the right
edges for LK-H tours. Especially for lower quality tours (NN and 2-opt), selection
strategies <M and CP have the lowest conditional probabilities, but this effect
disappears with higher quality tours.

4 Experimental Setup and Results

For the experimental evaluation, the fixing heuristics have been integrated into
a simple TSP solver written in Java. The solver works as follows: Each tour
was reduced using one of the fixing heuristics and subsequently improved by
an iterated local search (ILS) algorithm. In each iteration of the algorithm the
current tour was perturbed and locally optimized by an LK implementation,
which is able to handle fixed edges. For the perturbation a variable-strength
double-bridge move (DBM) was used increasing the number of DBMs each two
non-improving iterations. At the end of each iteration the new tour was compared
to the previous tour and discarded if no improvement was found, otherwise
kept for subsequent iterations. The iterations would stop after 2 non-improving
iterations. Finally, the improved tour was expanded back to a solution for the
original TSP instance. For comparison, all tours were optimized by the iterated

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Reducing the Size of TSP Instances by Fixing Edges 79

local search algorithm without any reduction, too. This solver was not designed
to compete with state-of-the-art solvers, but merely to evaluate our fixation
heuristics. Each parameter setup was tested by applying it to the tours described
in Sec. 3; average values were used for the following discussion. Computation
times are utilized CPU time on a 2.8 GHz Pentium 4 system with 1 GB memory
running Linux.

Table 2 holds the results for the different setups applied to the ILS and is
structured as follows: Rows are grouped by instance (brd14051 to sw24978)
and by starting tour for the ILS (‘NN’ to ‘LK-H’). The instances are ordered
by number of cities, the starting tours are ordered by descending tour length.
Columns are grouped into blocks, where the first block summarizes an ILS setup
without any fixation and the subsequent blocks summarize ILS setups with each
fixation heuristics (‘MST’ to ‘Close Pairs’). Each column block consists of four
columns: Improvement found when applying the ILS, required CPU time until
termination, size of the reduced instance (normalized number of cities), and
fraction of edges that are fixed (tabu for any ILS operation).

For every instance and each fixing heuristics (including no fixing) holds that
the better the starting tour is, the smaller the improvements found by the ILS
are. Applying our TSP solver to nearest neighbor tours (Tab. 2, rows with start
tour type ‘NN’) results in improvements of more than 20% for most setups
(columns ‘Impr. [%]’). For better starting tours, less improvement is achieved,
down to improvements of 0% for starting tours coming from LK-H.

Each fixing ILS setup can be compared with the corresponding ILS setup
without fixing regarding improvement on the given start tour and the required
CPU time. The following observations can be drawn from Tab. 2:

– For non-fixing setups, the CPU time is always higher compared to fixing set-
ups, as the effective problem size is larger for the non-fixing setup. However,
time consumption does not directly map to better tour quality.

– The Close Pairs (CP) fixing heuristics yields in improvements as good as
for non-fixing ILS, but requires significantly less time to reach these quality
levels. E. g. for instance brd14051 starting with 3-opt tours, both the non-
fixing ILS and the CP fixing ILS improve the start tour by about 6.2%, but
the CP-ILS requires only 31.9 s, whereas the non-fixing ILS requires 44.8 s.

– For the other fixing heuristics hold that they consume both less CPU time
and result in lesser improvements. Although this makes comparing the differ-
ent fixing strategies hard, improvements are still competitive while requiring
significantly less CPU time compared to the non-fixing ILS.

– Among all fixation-based ILS setups, the MST heuristics results in both the
smallest improvements and lowest running times compared to the other fixa-
tion heuristics. E. g. for instance sw2978 starting with 2-opt tours, the MST
heuristics results in an improvement of 10.1% consuming 21.8 s, whereas all
other fixation and non-fixation ILS setups find improvements of 11.4% and
better consuming 41.0 s and more.

– Comparing CPU time consumption versus possible improvement, the fixa-
tion heuristics can be put into three groups: Between the expensive, but
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Fig. 3. For each of the five instances using 3-opt starting tours, improvements and
CPU time of the ILS with fixation (MST, NN, <M, and CP) are normalized with the
results from ILS runs without fixation

good CP heuristics and the cheap, but not so good MST heuristics the re-
maining two heuristics NN and <M can be located. These two “medium”
heuristics show similar results both for found tour improvement and CPU
time consumption.

The last observation can be visualized as in Fig. 3, which compares the improve-
ments for each fixing heuristics applied to 3-opt tours. Both time and improvement
are normalized for each of the five TSP instances by the values from the runs with-
out fixing. The CP and the MST heuristics’ values are separated from the central
cluster consisting of NN and <M results. As can be seen, the CP heuristics reaches
improvements as good as the non-fixing ILS (normalized improvement close to
1.0), but requires only 3

4 of the time. NN and <M heuristics find improvements of
about 90% of those from the non-fixing ILS and still demand less than the half of
the time. The MST heuristics reaches about 70% of the non-fixing ILS’s improve-
ment, while consuming only a quarter of the CPU time.

For all fixing heuristics the size of the original instance has been compared to
the corresponding reduced instances’ size (in percent, columns ‘Red. Size [%]’ in
Tab. 2) and the number of free edges within the reduced instance (in percent,
columns ‘Free Edges [%]’).

– For close pairs (CP) fixations holds that the reduced instance’s size equals
always with the original instance’s size, as fixed edges can not have neighbor-
ing edges that are fixed, too, as this would contradict the selection criterion.
Thus, no nodes are redundant.

– For all combinations of instance and start tour, the MST fixing heuristics
is the most progressive one resulting in the smallest instances. Here, fixed
instances have on average less than half the number of cities compared to
the original instances. Within these reduced instances, more than half of the
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edges are free for the local search. E. g. for instance d15112 and 3-opt tours,
only 47.4% of the original nodes are left, whereas the other heuristics leave
54.9% (NN) to 75.7% (<M) (not considering CP).

– The nearest neighbor heuristics reduces all instance types for about the same
level (to 70–75% of the original size) except for instance sw24978, where the
fixed instance reach 66.0% to 72.2% of the original instances’ sizes.

– Over all instances and start tour type the nearest neighbor heuristics has a
very stable percentage of free edges, ranging only between 54.2% and 56.2%.

5 Conclusion

In order to extend current memetic algorithms for the TSP to find close to opti-
mum solutions for large TSP instances, we studied several edge-based problem
reduction techniques that can easily be incorporated into an evolutionary local
search framework. We have shown that fixing edges in TSP tours can consid-
erably reduce the computation time of a TSP solver compared to applying the
same solver to the unmodified problem instance. Still, the solutions found when
using fixing heuristics are nearly as good as the solutions found without fixing.
Therefore, edge fixing is a feasible approach to solve tours that are otherwise
too large for solvers regarding memory or time consumption.

When selecting one of the proposed fixing heuristics, a trade-off between ex-
pected solution quality, computation time, or required preprocessing steps has
to be made. E. g. the MST heuristics is expected to consume the least time, but
requires building an MST in advance. The close pairs strategy can be used if no
global knowledge is available, but here too few edges get fixed to decrease an
instance’s size considerably. As a compromise regarding time and quality, either
the nearest neighbor or the lighter than median heuristics can be applied.

Future work will focus on developing fixing heuristics for population-based
EAs and for very large TSP instances. For EAs, the knowledge of which edges
occur in parent tours can be used to select edges in offspring tours. For very large
instances such as the World TSP, fixation heuristics may exploit geographical
properties.
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Abstract. This paper presents a simple iterated local search meta-
heuristic incorporating a k-opt local search (KLS), called Iterated KLS
(IKLS for short), for solving the maximum clique problem (MCP). IKLS
consists of three components: LocalSearch at which KLS is used, a
Kick called LEC-Kick that escapes from local optima, and Restart
that occasionally diversifies the search by moving to other points in the
search space. IKLS is evaluated on DIMACS benchmark graphs. The
results showed that IKLS is an effective algorithm for the MCP through
comparisons with multi-start KLS and state-of-the-art metaheuristics.

1 Introduction

Let G = (V, E) be an arbitrary undirected graph where V is the set of n vertices
and E ⊆ V × V is the set of edges in G. For a subset S ⊆ V , let G(S) =
(S, E ∩ S × S) be the subgraph induced by S. A graph G = (V, E) is complete
if all its vertices are pairwise adjacent, i.e., ∀ i, j ∈ V with i �= j, (i, j) ∈ E. A
clique C is a subset of V such that the induced graph G(C) is complete. The
objective of the maximum clique problem (MCP) is to find a clique of maximum
cardinality in G. See the recent survey [3] on the MCP, which also contains an
extensive bibliography.

The MCP is known to be NP-hard [4] for arbitrary graphs, and strong neg-
ative results have been shown. H̊astad [6] showed that if NP �= ZPP then
no polynomial time algorithm can approximate the maximum clique within a
factor of n1−ε for any ε > 0, and this margin was tightened by Khot [13] to
n/2(log n)(1−ε)

.
Several exact methods such as branch-and-bound algorithms [23,20] have been

proposed to solve the MCP exactly. However, their effectiveness and applicabil-
ity are limited to relatively small or sparse graphs. Therefore much effort has
been directed towards devising efficient heuristic and metaheuristic algorithms
to find near-optimal solutions to large (dense) graphs within reasonable times.
A collection of them can be found in [8,3]. More recently, the following promis-
ing metaheuristic algorithms have been proposed: Reactive Local Search [2],
Variable Neighborhood Search [5], Steady-State Genetic Algorithm [22], and
Dynamic Local Search [21].

C. Cotta and J. van Hemert (Eds.): EvoCOP 2007, LNCS 4446, pp. 84–95, 2007.
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Most of the (meta)heuristic approaches to the MCP are based on a basic
heuristical principle that prefers vertices of higher degrees to vertices of lower
degrees in order to find a larger clique. Heuristics based on the principle are
called greedy. The greedy heuristic can be regarded as a local search (or local
improvement) method. The basic procedure is as follows: Given a current clique
CC having a single vertex v ∈ V , one of the vertices in vertex set PA of the
highest degree given by degG(PA) is repeatedly added to expand CC until PA is
empty, where PA denotes the vertex set of possible additions, i.e., the vertices
that connected to all vertices of CC, and degG(S)(v) stands for the degree of a
vertex v ∈ S in the subgraph G(S), where S ⊆ V . This greedy method was called
1-opt local search in [9] because at each iteration t, a single vertex v ∈ PA(t) is
moved to CC(t) to obtain a larger clique CC(t+1) := CC(t) ∪ {v}.

The 1-opt local search has been generalized in [9] by moving multiple vertices,
instead of a single vertex, at each iteration, in order to obtain a better clique.
The generalized local search is called k-opt local search (KLS). In KLS, variable,
not fixed, k vertices are moved to or from a current clique simultaneously at each
iteration by applying a sequence of add and drop move operations. The idea of
the sequential moves in KLS is borrowed from variable depth search (VDS) of Lin
and Kernighan [12,14]. KLS has been tested on the 37 hard DIMACS benchmark
graphs [8] and compared with recent metaheuristics of reactive local search [2],
genetic local search and iterated local search [16]. The results showed that KLS
was capable of finding better or at least competitive cliques in reasonable times.

Since KLS can be regarded as a simple local improvement tool and there is no
parameter setting by user, such as one to compulsorily stop KLS [9], it can be
used, without serious modification for the algorithm, as a component in meta-
heuristic frameworks such as iterated local search [15], memetic algorithm [19],
etc. Similar concepts can be found in several metaheuristics incorporating Lin-
Kernighan heuristic (VDS based local search) for the traveling salesman problem
(TSP): iterated Lin-Kernighan [7], chained Lin-Kernighan [1], and genetic iter-
ated local search [10]. For other hard problems, several metaheuristics with VDS
based local search have been proposed for the graph partitioning problem [17]
and for the unconstrained binary quadratic programming problem [11,18]. These
algorithms are known to be one of the best available metaheuristic algorithms
to the TSP and other hard problems. It therefore seems that their high search
performances mainly depend on effectiveness of the local search part of which
the algorithms are composed. Judging from these contributions and dependabil-
ity, the applications of metaheuristics embedded with KLS to the MCP appear
to be effective and promising.

In this paper we propose an iterated local search incorporating KLS, called
Iterated KLS (IKLS for short) for the MCP. IKLS consists of three components:
LocalSearch KLS, Kick called Lowest-Edges-Connectivity-based Kick (LEC-
Kick for short), and Restart; the details can be found in Section 2. We evaluate
the performance of IKLS on the DIMACS graphs, and show that despite the
simplicity of the procedure, IKLS is effective through comparisons with multi-
start KLS and the promising metaheuristics described above for the MCP.
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procedure IKLS
input: graph G = (V, E);
output: best clique Cbest in G;
begin

1 generate C; compute PA, OM, and degG(P A);

2 C := KLS(C, PA, OM, degG(P A)); Cbest := C;
3 repeat
4 C := LEC-Kick(C, P A, OM, degG(P A));

5 C := KLS(C, P A, OM, degG(P A));

6 if |C| > |Cbest| then Cbest := C; endif
7 if restart=true then
8 generate C; compute P A, OM, and degG(P A);

9 C := KLS(C, PA, OM, degG(P A));

10 if |C| > |Cbest| then Cbest := C; endif
11 endif
12 until terminate=true;
13 return Cbest ;

end;

Fig. 1. The flow of Iterated KLS

2 Iterated k-Opt Local Search

Iterated local search [15] can be thought of as a simple and powerful metaheuris-
tic that repeatedly applies local search technique to solutions which are obtained
by kick technique (corresponding to a mutation) that escapes from previously
found local optima. In this section we show an iterated local search incorporating
KLS, called Iterated k-opt Local Search (IKLS for short), for the MCP.

2.1 IKLS

Given a local optimum (clique), each iteration of IKLS consists of LocalSearch
at which KLS is used and Kick that escapes from local optima obtained by
KLS. As the additional strategy performed occasionally, we use Restart that
diversifies the search by moving to other positions in the search space. The top
level flow of IKLS is shown in Figure 1.

At first (line 1), we generate a feasible solution (clique) C that contains a
single vertex selected from V at random. We then compute the associated PA,
OM , and degG(PA)

1, where OM denotes, given a current clique CC, the vertex
set of one edge missing, i.e., the vertices that are connected to |CC| − 1 vertices
of CC, provided that CC ⊆ OM . KLS is applied to C, and the resulting local
optimum is stored as the best clique Cbest. The loop (lines 3–12) of IKLS that
includes the three components is repeated until the stopping condition (line
12) is satisfied. In our experiments, we stop IKLS when the clique with target
size that is optimal (or best-known) for each graph is found or the maximum
execution number of local searches is equal to 100× n, where n is the number
of vertices of G.

The details of LocalSearch, Kick, and Restart components are described
in the following subsections.
1 The information of PA, OM , and degG(PA) is updated whenever a single vertex

is moved to or from current clique during IKLS. The updating technique and data
structure used in IKLS are derived from the literature [2].
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KLS(CC, P A, OM, degG(P A))

begin
1 repeat
2 CCprev := CC, D := CCprev , g := 0, gmax := 0;
3 P := {1, . . . , n}; // Note that some vertices are removed only for the first iteration; see 2.3.
4 repeat
5 if |PA ∩ P | > 0 then // Add Phase
6 find a vertex v with maxv∈{PA∩P} { degG(P A∩P )(v) };

7 if multiple vertices with the same maximum degree are found
then select one vertex v among them randomly;

8 CC := CC ∪ {v}, g := g + 1, P := P\{v};
9 if g > gmax then gmax := g, CCbest := CC;

10 else // Drop Phase (if {PA ∩ P} = ∅)
11 find a vertex v ∈ {CC ∩ P} such that the resulting |PA ∩ P | is maximized;
12 if multiple vertices with the same size of the resulting |P A ∩ P | are found,

then select one vertex v among them randomly;
13 CC := CC\{v}, g := g − 1, P := P\{v};
14 if v is contained in CCprev then D := D\{v};
15 endif
16 update PA, OM, and degG(P A);

17 until D = ∅;
18 if gmax > 0 then CC := CCbest else CC := CCprev ;
19 until gmax ≤ 0;
20 return CC;

end;

Fig. 2. The pseudo code of KLS performed in IKLS

2.2 Local Search

The work of LocalSearch process in IKLS is to find local optima in a given
graph G. In the process we use KLS at lines 2, 5 and 9 in Figure 1. In the
following, we briefly review KLS [9], and describe simple devices given for KLS.

KLS performs several add and drop moves for a given feasible clique CC at
each iteration. The add move is to add a vertex v ∈ PA to CC if PA �= ∅ and
the drop move is to drop a vertex v ∈ CC. A set of neighbor cliques obtained
by each of the 1-opt moves is called 1-opt neighborhood.

The 1-opt neighborhood has been based in most of the existing (meta)heuristic
algorithms [8,3,16,2,21] for the MCP. Therefore, it is natural to consider lager
neighborhoods than the 1-opt one. However, it is confronted with several draw-
backs, such as how many vertices should be moved at each iteration, because the
feasible cliques and reasonable search are usually desired in local search; see [9]
on details of the drawbacks. In [9], the drawbacks were removed by introducing
variable depth search (VDS) [12,14] that is to change the size of the neighbor-
hood adaptively so that the algorithm can effectively traverse larger search space
within reasonable time. KLS determines dynamically at each iteration the value
of k, where k is the number of vertices to move. KLS efficiently explores the
(variable) k-opt neighborhood defined as the set of neighbors that can be ob-
tained by a sequence of several add and drop moves that are adaptively changed
in the feasible search space. More details and the basic procedure of KLS can be
found in [9].

To perform effective searches with IKLS, two simple devices are given for the
original KLS of [9]. The pseudo code of KLS for which the devices are given is
shown in Figure 2. Note that the devices lead to no serious modifications and
the basic procedure is the same as the original KLS.

The first one is to alter the process on the vertex selection rule performed in
the add and drop phases of KLS. In KLS used in IKLS, we select a vertex of
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LEC-Kick(CC, P A, OM, degG(P A))

begin
1 if all i ∈ CC are disconnected to all j ∈ V \CC then
2 select a vertex v ∈ V \CC randomly; compute P A, OM, and degG(P A);

3 CC := ∅; CC := CC ∪ {v}; return new clique CC;
4 endif
5 find a vertex v ∈ V \CC with the lowest edge number to vertices of CC.
6 if multiple vertices with the same lowest edge number are found

then select one vertex v among them randomly;
7 drop vertices from CC that are not connected to v;

// the dropped vertices are removed from P in Fig. 2 (line 3) only for 1st iteration of the next KLS.
8 update P A, OM, and degG(P A);

9 return new clique CC;
end;

Fig. 3. The pseudo code of Kick process in IKLS

the highest degree in subgraph G(PA ∩ P ) at line 6 instead of G(PA) in the
add phase, and select a vertex from the current clique in the drop phase such
that resulting |PA ∩ P | instead of |PA| is maximized at line 11. This simple
device in KLS contributes to slightly improve average size of cliques obtained by
it without increasing the computation time in many cases.

The second device (line 3) is related to the following Kick process.

2.3 Kick

The role of Kick is to escape from local optima found by LocalSearch process
by moving to other points where are not so far from the local optima in the
search space. This moving is made by perturbing the current local optimum
slightly so that a different local optimum can be found by the forthcoming local
search. Therefore, the general desire in designing Kick for a specific problem
is to reduce the probability to fall back into a previously found local optimum
without moving to a search point where is far away from the current one.

In the traveling salesman problem (TSP), a well-known kick method called
double-bridge move [1,7,15] has been used for iterated local search and other
relevant metaheuristic approaches in which a local search such as Lin-Kernighan
heuristic [14] is incorporated. It is known to be very useful in that it avoids to
fall back into a local optimum just found by the previous local search.

Since the double-bridge kick cannot be applied to the MCP, we newly design
a simple kick method for IKLS. One of the simplest methods is, given a current
clique CC, to drop m (1 ≤ m < |CC|) vertices from CC. However, it is difficult to
determine the number m that corresponds to perturbation strength [15] because
a suitable and optimal m may depend on graph, clique given, etc. Therefore,
the perturbation strength should be determined adaptively in IKLS. Our newly
designed method, called Lowest-Edges-Connectivity-based Kick (LEC-Kick for
short) is quite simple, and no parameter setting value such as m is required.

In IKLS, the Kick process (LEC-Kick) is performed at line 4 in Figure 1,
and the detail is shown in Figure 3. Lines 1–4 show the exceptional processing
performed only when all vertices of CC have no edge to all vertices of V \CC in
G. In this case, we select a single vertex v from V \CC at random, and return
the new (poor) clique having v.
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Otherwise, the main process of LEC-Kick is performed at lines 5–9 in Figure 3.
At first, we randomly select a vertex v ∈ V \CC with the lowest edge number to
vertices of CC. After that, all vertices that are not connected to v are removed
from CC to make a new clique at line 7. The new clique contains the vertex v
that is not included in the initial clique given for the kick process. In this point,
containing such a vertex v into a newly kicked clique to the forthcoming local
search may contribute to reduce the probability to fall back into the clique just
discovered by the previous local search.

Although the number of vertices dropped from CC is adaptively determined
in the main LEC-Kick process, it may be feared that most of the vertices are
dropped and therefore the resulting size of the clique kicked is too small. We will
show the additional results (in Table 1) related to this concern in Section 3.

To further reduce the probability described above, a simple device is given
for the forthcoming KLS as the second device; the vertices dropped from CC at
line 7 in Figure 3 are removed from the set P at line 3 in Figure 2. This device
is performed only for the first iteration of the forthcoming KLS, not for all the
iterations.

Let us concentrate our attention on Kick and LocalSearch processes in
IKLS. Both processes are sequentially performed in every IKLS iteration to
repeatedly explore the cliques that exist around local optima. It therefore seems
to be similar to the “plateau search” [2,21]. We here regard the sequential search
performed by the two processes as “sawteeth search” instead of “plateau search”
because the up-and-down motion imaged from fluctuations of the sizes of cliques
searched by the sequential processes is relatively larger than that imaged from
the sizes of cliques found in the original plateau search as in [2]. Note that
restricted plateau searches are self-adaptively executed in KLS itself.

2.4 Restart

The aim of Restart, the additional strategy performed occasionally in IKLS,
is to diversify the main search of IKLS, i.e., the sawteeth search described at
the previous subsection, by moving compulsorily to other points in the search
space. Since such diversifications should be given after the sawteeth search was
performed for a while, we occasionally perform Restart process if the following
condition is satisfied at line 7 in Figure 1: if no new best clique CCbest is found
for more than |CCbest| iterations of the sawteeth search in IKLS, where |CCbest|
is the size of the best clique CCbest found so far in the search. In response
to this requirement, a new clique is generated at line 8 by selecting a single
vertex v ∈ V \{CCbest} at random. At line 9, the new clique C, the single vertex
selected, is expanded by KLS, and the sawteeth search is started again.

3 Experimental Results

In order to evaluate the performance of IKLS, we performed extensive compu-
tational experiments on the 37 hard instances of DIMACS benchmark graphs
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with up to 4000 nodes and up to 5506380 edges, available from the Second DI-
MACS Implementation Challenge2. All experiments were performed on Hewlett-
Packard xw4300 workstation with Pentium4 3.4GHz, 4GB RAM, and Fedora
Core 5, using the gcc compiler 4.11 with ‘-O2’ option. To execute the DIMACS
Machine Benchmark3, this machine required 0.45 CPU seconds for r300.5, 2.78
(s) for r400.5 and 8.32 (s) for r500.5.

We first compare the performance of IKLS with that of multi-start KLS
(MKLS for short) because it is reasonable in that both algorithms are based
on the same local search KLS, and it may be useful to see the performance dif-
ference between the algorithmic frameworks. MKLS is a simple procedure, in
which repeatedly KLS is applied to newly generated cliques at random, and the
best overall clique is kept and output as the result. Each MKLS iteration con-
sists of two parts: generating an initial (poor) clique having a single vertex from
V at random and KLS that is applied to the initial clique. In our experiments,
this simple process is repeated until the clique with target size that is known to
be optimal (or best-known) for each graph is found or 100× n iterations. The
stopping condition for MKLS is the same with IKLS (see 2.1). The remaining
parameter setting that should be set for IKLS has been described at 2.4.

Table 1 shows the results of IKLS and MKLS. Each approach was run inde-
pendently for 100 times on each graph, provided MKLS was carried out 10 runs
instead of 100 runs only for MANN a81 because of a large amount of computation
times. The first two columns of the table contain the instance names and their
best-known clique size “BR” (‘*’ if optimality is proved), respectively. In the
following columns for IKLS results, we show the best found clique size “Best”
with the number of times in which the best found cliques could be found by
the algorithm “(#B)”, the average clique size “Avg” with standard deviation
“(s.dev.)”, the worst clique size “Worst” with the number of times in which the
worst cliques were found by the algorithm “(#W)”, the average running time
“Time(s)”4 with standard deviation “(s.dev.)” in seconds in case the algorithm
could find the best found cliques. The following three columns show the addi-
tional information in IKLS executions: the average steps of add moves “#add”,
the average number of kicks applied in a single IKLS run “#kick”, and the aver-
age number of vertices dropped from current cliques in the kick process “#dk”.
In the remaining columns, we provide for MKLS results with the corresponding
meaning which can be found in the columns of the IKLS results.

We observed in Table 1 that IKLS is capable of finding the best-known clique
on all graphs, while MKLS fails on brock400 2, brock800 2, brock800 4, and
keller6. It was shown that the average results “Avg” of IKLS were at least
equal to, or better than those of MKLS except for C2000.9. In particular, the
results of IKLS on MANN a81 and keller6, known to be the hardest instances in
the DIMACS graph set, were considerably better. Therefore the IKLS framework
for the MCP seems to be better than the multi-start framework with KLS in

2 http://dimacs.rutgers.edu/Challenges/
3 dmclique is available from ftp://dimacs.rutgers.edu/pub/dsj/clique
4 In Table 1 (and 2) the average run times less than 0.001 seconds are shown as “< ε”.
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terms of solution qualities although MKLS reaches the optimal or best-known
clique in shorter times on several graphs, such as DSJC1000.5, p hat1500-1, etc.

As shown in subsection 2.3, although the number of vertices dropped from
current clique in LEC-Kick is adaptively determined with the edge density of a
given graph G and the connectivity of the current clique to a vertex v selected
from V \CC at random, it is feared that most of the vertices are dropped in
LEC-Kick and the size of the resulting clique is too small. The additional results
of the column “#dk” in Table 1 wipe out the fear; for example, for MANN a81
that is a dense graph and for DSJC500.5 that is a sparse (not dense) graph
with edge density of 0.5, the average numbers of vertices dropped from current
cliques are 26 and 9 (that correspond to 2.36% and 69.2% in each BR of the
graphs), respectively. If we suppose that the optimal clique size depends on the
edge density of G and in addition, KLS obtains near-optimum cliques in many
iterations of IKLS, the perturbation strength in LEC-Kick (the results of “#dk”)
is quite reasonable in many cases to escape from local optima.

We next compare the performance of IKLS with those of state-of-the-art
promising metaheuristics with which good results have been reported: Reac-
tive Local Search (RLS) [2], Dynamic Local Search (DLS) [21], Variable Neigh-
borhood Search (VNS) [5], and Steady-State Genetic Algorithm (HSSGA) [22].
Table 2 summarizes the results (Best, Avg, Time(s)) of IKLS, RLS, DLS, VNS
and HSSGA. To have fair comparisons, the average running times of the com-
petitors shown in the table were all adjusted according to the results based on
the DIMACS Machine Benchmark test reported in their papers.

It is considerably impressive that the cliques of size 1100 on MANN a81, known
to be one of the hardest graphs in the benchmark set, can be obtained by IKLS
in all 100 runs in relatively short running times, while RLS and DLS only finds
the cliques of size 1098 as the best result in 100 runs, and VNS obtains the
average size of 1099.3 in 10 runs with the clique sizes ranging from 1098 to 1100.
Therefore, the capability of IKLS to find the best-known cliques of size 1100
for MANN a81 is superior to the recent metaheuristics. Furthermore, it can be
observed that IKLS finds the best-known cliques of size 59 on keller6 in all
runs in shorter running times. From these results, it should be noted that IKLS
is more efficient and effective than the others for such hard graphs.

The results of IKLS for the other graphs seem to be comparable with those of
RLS, DLS, and VNS except for larger and denser C graphs such as C2000.9.
For larger brock graphs such as brock800 2, brock800 4, etc., DLS clearly
outperforms IKLS and the others on the average clique sizes obtained.

Although in this paper the results of IKLS have been shown only for the 37
graphs chosen from the 80 DIMACS benchmark ones, additional experimental
results showed that IKLS obtained the best-known cliques in all 100 runs for the
remaining graphs except for larger brock graphs. In addition, we have already
observed that Restart in IKLS contributes to improve the total performance
on larger MANN a graphs in comparison to IKLS without Restart. Finally, in
IKLS we adopted the random walk acceptance criterion [15], where a new so-
lution found by KLS is perturbed by LEC-Kick in each IKLS iteration without
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94 K. Katayama, M. Sadamatsu, and H. Narihisa

taking into account the quality of solutions in the acceptance decision. Addi-
tional experimental results indicated that an alternative procedure of IKLS in
which Cbest (the best clique found so far) is perturbed by LEC-Kick was in-
ferior to IKLS shown in the paper on C1000.9, C4000.5, MANN a45, MANN a81,
gen400 p0.9 55, keller6, and all brock graphs particularly.

4 Conclusion

We proposed a simple iterated local search metaheuristic, called Iterated k-opt
Local Search (IKLS), for solving the maximum clique problem (MCP). Each
iteration of IKLS has the components of LocalSearch at which KLS is used
and a Kick called Lowest-Edges-Connectivity-based Kick that adaptively deter-
mines the perturbation strength. Both processes, called the sawteeth search, are
repeated for a while, and Restart is performed occasionally in order to diver-
sify the search by compulsorily moving to other points in the search space. After
the diversification, the sawteeth search is started again. Finally the best clique
(or the target sized one) found by IKLS is output as the result.

To see the performance difference between algorithmic frameworks based on
the same local search, KLS, we first compared Iterated KLS (IKLS) with multi-
start KLS (MKLS) on the 37 DIMACS benchmark graphs. The difference was
observed on in particular hard graphs, and we showed that the IKLS framework
is suitable for solving the MCP. Furthermore, the results of IKLS were compared
with recent results of effective metaheuristics on the benchmark graphs. It was
demonstrated that although IKLS fails on some graphs, it is capable of finding
better or at least competitive cliques despite the simplicity of the procedure. In
particular, it was impressive that IKLS found in all runs the cliques of size 1100
on MANN a81, one of the hardest graphs in the benchmark set, and obtained the
best-known cliques in all runs on keller6 in shorter running times than the
other metaheuristics. We therefore conclude that IKLS is effective and a new
promising metaheuristic for the MCP.
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Abstract. Memetic algorithms usually employ long running times, since
local search is performed every time a new solution is generated. Acceler-
ation of a memetic algorithm requires focusing on local search, the most
time-consuming component. This paper describes the application of two
acceleration techniques to local search in a memetic algorithm: caching of
values of objective function for neighbours and forbidding moves which
could increase distance between solutions. Computational experiments
indicate that in the capacitated vehicle routing problem the usage of
these techniques is not really profitable, because of cache management
overhead and implementation issues.

1 Introduction

Population-based algorithms are usually more time-consuming than their single-
solution-based counterparts. Evolutionary algorithms, as an example of the first
type, employ large computation times, as compared to e.g. simulated annealing
or tabu search. Memetic algorithms (MAs) [1], a kind of evolutionary ones, are
even more prone to this problem; in a memetic algorithm a local search process
is conducted for every solution in a population, which makes the process of
computation even longer.

On the other hand, population-based algorithms usually offer the possibility of
exploration of the search space to high extent and, thus, generate better solutions
than procedures based solely on local search. Therefore, algorithms managing a
population of solutions are a useful tool of optimization. Nevertheless, it would
be profitable if the speed of memetic algorithms could be increased without
deterioration in the quality of results.

The majority of computation time of a memetic algorithm is usually spent
on local search, after each recombination and mutation [1]. Consequently, each
attempt to speed up the whole algorithm should be focused on local search.

The main acceleration possibility in local search concerns the computation
of quality of neighbours to a current solution. If the difference of the objec-
tive function between the current solution and its neighbour may be computed
faster than the objective for the neighbour from scratch, then the whole process

C. Cotta and J. van Hemert (Eds.): EvoCOP 2007, LNCS 4446, pp. 96–107, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Accelerating Local Search in a Memetic Algorithm for the CVRP 97

speeds-up drastically. In [1] Merz claims that it is possible for almost every com-
binatorial optimization problem. Jaszkiewicz [2] mentions that local search for
the TSP performed almost 300 times more function evaluations per second than
a genetic procedure computing the objective from scratch. This is also the case
in the capacitated vehicle routing problem (CVRP), which is considered here:
neighbours of a solution (w.r.t. commonly used neighbourhood operators) may
be evaluated quicker than random solutions.

However, Ishibuchi et al. [3] rightly note that there are problems for which such
acceleration is not possible. They give an example of a flowshop problem with
the completion time as the objective: a neighbour to a solution is not evaluated
faster than a completely new solution. This results from the fact that certain
objectives and/or constraints have global character and even a small change in
contents of a solution require complete recomputation of the objective function
and/or checking all constraints.

Another possibility of speeding-up local search requires caching of (storing in
auxiliary memory) values of the difference in objective functions. This technique
is not new and is also known as “don’t look bits” [4]: if a neighbour of a solution
has been evaluated as worse in a previous iteration of local search, then it is not
evaluated at all in the current iteration. Such an approach requires that only the
changing part of a neighbourhood of a current solution is evaluated.

The two mentioned techniques do not take the memetic search into account.
However, there is a possibility to speed-up local search also based on information
contained in the population of an MA. If the optimization problem considered
exhibits the ’big valley’ structure, then it means that good solutions of the
problem are located near to each other, and to global optima, in the search space
[5], [1], [6]. In such a case recombination operators of MAs should be respectful
or distance-preserving [5], [7], [1]. Moreover, the local search process, which is
always launched after a recombination, should also observe that the distance
between an offspring and its parents is not inflated. This is the place where
speed-up may be obtained: some moves of local search on an offspring should be
forbidden and, therefore, some neighbours not checked for improvement at all,
since they would lead to an increase in distance to parents. This technique was
successfully applied in MAs by Merz [8] for the quadratic assignment problem
and by Jaszkiewicz [9] for the TSP.

This paper is a study of the application of the two latter acceleration tech-
niques to the capacitated vehicle routing problem. It firstly describes design of
and experiments with cache in local search. Then, experiments with local search
moves forbidden after distance-preserving recombination are presented. However,
due to the nature of the analysed problem and implementation issues it appears
that these techniques result in only small acceleration of the memetic algorithm.

2 The Capacitated Vehicle Routing Problem

The capacitated vehicle routing problem (CVRP) [10] is a very basic formula-
tion of a problem which a transportation company might face in its everyday
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98 M. Kubiak and P. Weso�lek

operations. The goal is to find the shortest-possible set of routes for the com-
pany’s vehicles in order to satisfy demands of customers for certain goods. Each
of identical vehicles starts and finishes its route at the company’s depot, and
must not carry more goods than its capacity specifies. All customers have to
be serviced, each exactly once by one vehicle. Distances between the depot and
customers are given.

The version of the CVRP considered here does not fix the number of vehicles
(it is a decision variable); also the distance to be travelled by a vehicle is not
constrained. Compared to the multiple-TSP, the CVRP formulates one more
constraint, the capacity constraint: the sum of demands of customers serviced
by one vehicle (i.e. in one route) must not exceed the vehicle’s capacity.

Refer to [10] for more information about the CVRP.

3 Cache for Neighbourhood Operators

3.1 The Idea of Caching Evaluations of Neighbours

When applied to a solution, neighbourhood operators in local search for the CVRP
usually modify only a small fragment of its contents. Large parts of this solution
stay intact. Consequently, large number of moves which modified the original so-
lution may also be performed for the modified, new one, and the modifications of
the objective function stay the same. Therefore, there is no need to recompute this
change of the objective; it may be stored in cache for later use.

Nevertheless, some moves from the original solution are changed by the ac-
tually performed move. These modified moves must not be stored; they have
to be removed from the cache. The set of such moves strongly depends on the
performed move.

These remarks lead to the following algorithm of local search with cache:

localSearch(s)
do:

for each s′ ∈ N(s) do:
if Δf(s′, s) is stored in the cache:

Δf = Δf(s′, s) is taken from the cache
else:

compute Δf = Δf(s′, s) = f(s′)− f(s)
store Δf(s′, s) in the cache for later use

if Δf < 0 then si = s′ is an improved neighbour of s
if si has been found (an improved neighbour of s):

s = si (move to the neighbour)
update the cache:

for each sa ∈ N(s) affected by the move, delete Δf(sa, s) from
the cache

else: break the main loop (a local optimum was found)
while (true)
return s (a local optimum)
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From this description one may notice the possible source of gain in speed:
instead of computing Δf(s′, s) = f(s′) − f(s) (the fitness difference) for each
neighbour s′ of s, this value is stored in the cache for later use. However, the
operation of cache update, which has to be called after a move is found in order
to ensure the cache stays valid, is a possible source of computation cost. The
goal of caching is to make the gain higher than the cost.

Local search is usually utilised in one of two possible ways: first improvement
(greedy) or best improvement (steepest). It may be predicted [11] that the gain
from caching will be greater for the steepest algorithm. It has to check the whole
neighbourhood in every iteration, so the auxiliary memory will be fully up-to-
date. In case of the greedy algorithm cache is initially empty and stays in this
state for many iterations, until it becomes hard to find an improving neighbour.
Only then it is filled with up-to-date values. However, the overhead connected
with cache updates is present in every iteration.

3.2 Cache Requirements

In the CVRP not only the objective function matters. There is also the capacity
constraint, which involves whole routes, not only single customers. Thus, if the
capacity constraint for a neighbour is violated then this neighbour is infeasible;
such moves are forbidden in local search. Therefore, not only the change in the
objective function has to be stored in the cache, but also the status of feasibility
of a neighbour.

Three neighbourhood operators are considered here (size of a neighbourhood
is given in brackets):

– merge: merge of any 2 routes (O(T 2); T is the number of routes in a solution)
– 2opt: exchange of any 2 edges (O((n + T )2); n is the number of customers)
– swap: exchange of any 2 customers (O(n2))

Because these operators have different semantics, cache must be designed and
implemented independently for each of them (in separate data structures).

The local search considered here assumes that the neighbourhoods of these
operators may be joined to form one large neighbourhood. It also means that
the order of execution of operators cannot be determined in advance (it may
be e.g.: merge, merge, 2opt, swap, 2opt,. . . ; it may be any other order). Such
a possibility makes local search potentially more powerful (there are less local
optima in the search space) but also more time-consuming. In case of cache this
possibility creates a requirement that when one type of move is performed, then
cache of all operations has to be updated.

The neighbourhoods of the operators have different sizes; the neighbourhood
of 2opt and swap is considerably larger than the one of merge. Moreover, the
merge operation is very specific: the number of applications of this operator is
always very limited by the minimum possible number of routes. Finally, initial
experiments with MAs indicated that the number of applications of this opera-
tor amounts to 5–10% of the total number of applications of all operators; the
majority of search effort is spent on 2opt and swap. Therefore, the cache was
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implemented for these two operators only. The size of memory for the cache
structures is the same as the size of the related neighbourhoods.

4 Speeding-Up 2opt Feasibility Checks

In the CVRP, 2opt may be used in two main configurations [12]:

– exchanging 2 edges inside one route (in-route 2opt),
– exchanging 2 edges between two different routes (between-routes 2opt).

The main computation cost of finding an improving 2opt move is related to fea-
sibility checks of between-routes 2opt ; it involves two routes, which may become
infeasible after the move is performed, due to the capacity constraint present in
the CVRP.

For the exemplary solution shown in Figure 1 (top, left) there are two ways in
which a 2opt may be executed if removing edges (2, 3) and (8, 9) (the marked ones):

– by connecting (2, 8) and (3, 9) (Figure 1, top, centre);
– by connecting (2, 9) and (3, 8) (Figure 1, top, right).

Both of these between-routes 2opt configurations are prone to infeasibility; e.g.
while connecting (2, 8) and (3, 9) if the sum of demands of customers (1, 2, 8, 7)
or (6, 5, 4, 3, 9, 10, 11, 12) exceeds the capacity, then this move is infeasible.

All such moves require, therefore, that parts of routes (e.g. the mentioned
(1, 2) and (8, 7)) have known demands, so they could be added for the feasibility
check. This is the cause of additional high computation cost in local search
(pessimistically: O(n)), if these parts of demands are computed from scratch
every time a between-routes 2opt is checked.

In [12] a technique was described which reduces this cost to a constant. It is
based on the observation that demands of parts of routes may be stored and
simply updated when iterating over neighbours of a current solution in a right
order. This order is called a lexicographic one.

An example of such order is given in Figure 1. The top of Figure 1 shows a
2opt removing edges (2, 3) and (8, 9) (as described above); the demands of parts
(1, 2), (3, 4, 5, 6), (7, 8), (9, 10, 11, 12) are required. The bottom of Figure 1 shows
the immediately next 2opt moves (in the lexicographic order), the ones removing
edges (2, 3) and (9, 10). The required demands of parts (1, 2), (3, 4, 5, 6) have just
been computed in the previous iteration and may be used; the demands of parts
(7, 8, 9) and (10, 11, 12) may be computed from the previous values at the cost
of two additions.

Due to the high predicted gain in computation time, this technique was used
in local search in each configuration with cache.

5 Forbidden Moves of Local Search After Recombination

Based on the results of ’big valley’ examination in the CVRP [7] it is known that
preservation of edges is important for quality of solutions, as it is the case of the
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Fig. 1. Edge exchanges in lexicographic order: 2opt for (2, 3), (8, 9) (top) and 2opt for
(2, 3) and (9, 10) (bottom)

Fig. 2. Example of application of crossover operators: parent1, parent2, CECPX2 off-
spring (common edges emphasized), SPX offspring (edges from parent1 emphasized)

TSP [9]. Therefore, Kubiak [7] proposed a set of distance-preserving crossover
operators for the problem. One of them, CECPX2, creates an offspring in such a
way that it always contains all edges common to both parents (common edges),
possibly including some additional ones. An example of application of CECPX2
is shown in Figure 2.

Having the idea of ’big valley’ and distance preservation in mind, it makes
sense after CECPX2 to forbid in local search all moves which would change any
edge from the set of common edges. Therefore, an offspring of CECPX2 has the
common edges marked as ’forbidden’. All neighbourhood operators check if a
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move deleted one of such edges and if so, the move is forbidden. In consequence,
a significant speed-up should be obtained if sets of common edges are large.

This technique might be used with other types of operators (not distance-
preserving) provided that such operator explicitly computed the set of common
edges. If a crossover does not determine the set, it cannot forbid moves changing
common edges. As an example of such operator we use SPX (its offspring is
shown in Figure 2). It is a very good and fast crossover designed by Prins [13].

6 Computational Experiments

In all experiments 7 well-known instances of the CVRP were used, taken from
[14]. Their names (which also indicate the number of customers) are given in
tables with results, e.g. Table 1. Instances with different sizes were selected in
order to observe the effect of scale in cache and forbidden moves.

6.1 Experiments with Local Search

In order to asses the efficiency of cache in local search, an experiment with 10
different configurations of this algorithm was conducted. These configurations
resulted from:

– two versions of local search: greedy and steepest;
– three versions w.r.t. cache: without cache (denoted nc); with all cache struc-

tures (c); the same as c, but without 2opt cache (c∗);
– two types of neighbourhoods: one joined neighbourhood of merge, 2opt, swap

(described as n-3); a merge neighbourhood followed by a joined 2opt and
swap (described as n-1-2).

Each configuration was run in a multiple start local search (MSLS) algorithm,
each time starting from a new random solution. MSLS was run 10 times; each
run stopped after 100 LS processes.

Average times of computation in this experiment are given in Table 1. Quality of
results is not given, since all the configurations had them approximately the same.

The greedy version of local search is several times faster than the steepest
one. The version n-1-2 of greedy search is slightly faster than n-3. These results
were expected: greedy is usually faster; n-1-2 searches smaller neighbourhoods.

What is more important, the usage of cache in n-3 drastically deteriorates
the runing times. This might be explained by the merge operations included in
the neighbourhood. This operation has no cache on its own, but each time it is
performed it results in updates to cache of other operators, making the cache
almost empty and the cache management cost unacceptably high.

The usage of cache in n-1-2 gives no improvement, as well.
For the steepest version of local search, the comparison of n-3 and n-1-2 (no

cache) yields the same conclusions: the latter is faster. The cache also deteriorates
the situation here. Only the c∗ version results in slight improvements.
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Table 1. Average times of computation (in seconds) for local search algorithms, greedy
(left) and steepest (right)

n-3 n-1-2

instance nc c nc c c∗

c50 0.7 2.0 0.7 1.2 0.5
tai75d 2.5 6.9 2.2 4.1 2.5
tai100d 5.5 16.8 4.8 8.4 5.5
c120 11.5 34.6 8.7 14.3 9.2

tai150b 20.8 83.1 17.9 27.2 17.7
c199 30.4 289.4 29.1 43.3 29.5

tai385 299.9 5649.1 301.3 394.3 292.3

n-3 n-1-2

instance nc c nc c c∗

c50 3.5 5.0 2.0 2.7 2.0
tai75d 14.2 18.4 8.8 10.1 8.1
tai100d 34.0 44.3 20.4 22.6 18.5
c120 61.3 80.1 36.8 39.4 31.0

tai150b 122.7 178.7 77.5 81.2 68.8
c199 279.4 519.9 168.8 173.5 147.1

tai385 2543.5 7897.6 1597.5 1594.8 1385.7

To summarize, the results of this experiment show that cache structures do
not really improve LS running times. Instead, they slow LS down in many con-
figurations. The cause of this effect lies most probably in the capacity constraint.
Because of this constraint the operation of cache updates is time-consuming: if
a move to a neighbour changes more than one route (which happens often with
2opt and swap), then a large part of cache has to be invalidated – all moves
concerning every part of the modified routes. This is not the case e.g. in TSP or
other unconstrained problems (see [1]).

The possible source of this disappointing result might also lie in details of
cache implementation.

6.2 Local Search Execution Profiles

We decided to make detailed profiles of local search executions in order to gain
insights into the cost of search and cache operations. In this case, analytical
computation of cost is difficult: it is hard to compute the actual or expected
number of local search iterations, or to estimate the cache usage. That is why
we analysed the issue empirically [11].

We tested LS with the following settings:

– LS version: greedy or steepest,
– cache usage: without cache (nc); with all cache structures (c); with the most

promising cache settings, leaving 2opt cache out as too costly (c∗),
– neighbourhood: n-1-2.

Only two instances were tested, tai100d and c120. One run of MSLS was con-
ducted for each setting and instance, consisting of 5 independent LS processes.
The runs were limited and short because code profiling usually considerably
increases the run time due to injection of timing routines into the original code.

The profiling results of greedy LS for instance c120 are presented in Table 2.
They contain the times of operations (search and cache) for each profiled LS set-
ting. Also percentages of the total run time of the base version (n-1-2-nc) are
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Table 2. Times of execution of search and cache operations in greedy LS; c120

n-1-2-nc n-1-2-c n-1-2-c∗

operation time [s] (percent) time [s] (percent) time [s] (percent)

2opt : eval. of neighbours 146.3 (50.4) 47.6 (16.4) 57.1 (19.7)
2opt : cache read/write 0.0 (0.0) 30.1 (10.4) 2.6 (0.9)
2opt : cache update 0.0 (0.0) 19.8 (6.8) 0.0 (0.0)
2opt : total search cost 146.3 (50.4) 97.5 (33.6) 59.7 (20.6)

swap: eval. of neighbours 33.2 (11.4) 13.3 (4.6) 11.5 (4.0)
swap: cache read/write 0.0 (0.0) 8.1 (2.8) 7.2 (2.5)
swap: cache update 0.0 (0.0) 5.1 (1.8) 5.1 (1.8)
swap: total search cost 33.2 (11.4) 26.5 (9.2) 23.8 (8.2)

operators: total 179.5 (61.8) 124.0 (42.7) 83.5 (28.8)

greedy LS: total 290.2 (100.0) 209.9 (72.3) 173.1 (59.6)

shown. The merge operator is not reported due to insignificant cost of its oper-
ations (1–2% of the total run time in all runs).

For the greedy version without cache, very high cost of search by the 2opt
operator is clearly visible (50.4% of the total run time). The cost of swap is
lower, although it is also considerable (11.4%). Consequently, there is space for
improvement in this base version.

The introduction of cache decreases the 2opt evaluation time, to 16.4%. How-
ever, it introduces new cost components: cache reads and writes (10.4%), and
cache updates after a performed move (6.8%). In total, the 2opt search time
drops from 50.5% to 33.6%; it seems that the decrease is not as high as could
be: the 2opt cache cost is considerable.

The same conclusion applies to the swap operator: the evaluation time drops
from 11.4% to 4.6%, but cache management (read/write and update) takes an-
other 4.6%, making the cache only slightly profitable.

The analysis of cache usage in these profiled runs demonstrated that only
28.1% of 2opt cache is used, while for swap it is 58.8%. As predicted, the cached
values are rarely used in the greedy version, because improving steps are usu-
ally found very quickly (the neighbourhood is not completely searched through,
sparsely filling cache with valid values). Moreover, these numbers indicate that
2opt updates invalidate large parts of cache, while for the swap operator most
of the cache stays valid after an improving move is performed.

The last setting, n-1-2-c∗, did not use 2opt cache; it seemed that the cache
management cost for this operator was too high. The results show that this
approach gives the highest gain for the greedy LS: the evaluation cost for 2opt
amounts to 19.7%, but the management cost is almost none (the figure 0.9% re-
flects the time of calls to empty cache which is not updated at all). In conjunction
with some gain from swap, the overall speed-up of LS equals 40.4%.
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In case of instance tai100d (the detailed results are not reported) the cache
management cost was generally higher, making cache usage too expensive. It
indicates that cache may be beneficial for larger instances only, if ever.

The steepest version differed mainly in the cache usage: 62.0% of 2opt neigh-
bours were evaluated based on the cache contents; as much as 77.2% in the case
of swap. Therefore, gains from cache were slightly higher.

To summarise this experiment, the execution profiles indicate high cache man-
agement cost which is generally compensated by gain in evaluation of neighbours,
but results in no further significant improvement.

6.3 Experiments with a Memetic Algorithm

The evaluation of forbidden changes (FC) required an experiment with memetic
algorithm. This algorithm was run in 12 different configurations renderred by:

– two versions of embedded local search: greedy and steepest;
– two versions w.r.t. cache usage in local search: nc (no cache) and c∗ (cache,

but without 2opt);
– three variants of crossover: SPX, CECPX2 and CECPX2 with forbidden

changes (CECPX2-FC).

Each configuration was run 30 times. The stop criterion was the total number
of generations, equal to the average number of generations required for the MA
to converge. The algorithms running times are gathered in Table 3.

Table 3. Average times of computation (in seconds) for memetic algorithms, greedy
(above) and steepest (below)

SPX CECPX2 CECPX2-FC

instance nc c∗ nc c∗ nc c∗

c50 1.9 2.0 1.0 1.0 1.0 1.0
tai75d 13.9 13.9 12.6 12.4 12.7 12.5
tai100d 31.2 30.6 29.4 28.7 29.7 29.1
c120 67.2 57.0 67.5 56.3 68.9 56.6

tai150b 234.2 217.9 218.6 206.9 221.1 206.6
c199 352.7 317.9 373.0 343.9 376.6 341.7

tai385 4170.3 3695.7 5033.2 4377.3 4990.6 4387.5

SPX CECPX2 CECPX2-FC

instance nc c∗ nc c∗ nc c∗

c50 2.0 2.0 2.0 2.0 2.0 2.0
tai75d 15.7 14.4 12.3 11.3 12.3 11.2
tai100d 36.1 32.2 30.0 27.8 29.7 26.2
c120 61.4 49.8 56.7 47.9 56.9 47.7

tai150b 201.5 181.0 173.9 163.7 178.4 162.3
c199 318.5 277.3 301.0 274.2 297.3 261.9

tai385 3264.5 2767.5 2897.1 2623.0 2879.8 2584.6
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For greedy versions of local search embedded in the memetic algorithm the
configuration with operator SPX is the fastest, especially with cache (c∗), which
results in some small gain in computation time (approx. 10%). For the CECPX2
operator also the versions with cache are a bit faster (also approx. 10%). The
forbidden changes gain nothing, though.

The MAs with steepest local search are significantly faster than their greedy
counterparts. Similarily to the latter, cache usage intoduces a small speed-up. For
steepest configurations, CECPX2 is generally faster than SPX. The application
of forbidden changes gives in effect a tiny gain in computation time.

In summary, however, it has to be said that both of the applied techniques,
cache and forbidden changes, did not provide the expected acceleration in the
memetic algorithm.

7 Conclusions

The paper presented experiments with some acceleration techniques for local
search and memetic algorithm applied to the CVRP.

The obtained results indicate that the application of cache in the LS gives
no real gain; compared to results reported for other problems (e.g. the TSP)
there is no profitability in using cache. It seems that the main problem in the
cache for the CVRP is the cache management cost, which results from the need
to update the cache contents each time an improving move is performed (the
capacity constraint forces large parts of cache to be invalidated). The application
of forbidden moves in the MA also leads to no gain.

Comparing roughly the implementation cost it appears that cache design and
implementation is very expensive (especially the tests of correctness of cache
updates), which makes it an inefficient technique. The cost of implementation
of forbidden changes was, in contrast, surprisingly low. Perhaps this technique
requires some more attention from the authors and it may in future lead to some
improvement.

However, the comparison of results from this and the initial version of this
paper revealed that the running times of both LS and MA decreased 5–10 times
in the final version. It was the result of changes in parts of local search code
which affected all the configurations analysed in this paper. These were low-
level, implementation changes (e.g. method inlining, avoiding calls to copying
constructors by passing references, etc.) introduced after first code profiling.
These changes caused the gains from cache and forbidden changes to become
virtually invisible, although they were noticeable in first experiments. Perhaps
the implementation of cache operations was not as efficient as it could be. Further
implementation work should resolve this issue.

Finally, the authors are satisfied with acceleration of local search and memetic
algorithm achieved during preparation of this paper.
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Abstract. Frequency assignment is a well-known problem in Opera-
tions Research for which different mathematical models exist depending
on the application specific conditions. However, most of these models
are far from considering actual technologies currently deployed in GSM
networks (e.g. frequency hopping). These technologies allow the network
capacity to be actually increased to some extent by avoiding the inter-
ferences provoked by channel reuse due to the limited available radio
spectrum, thus improving the Quality of Service (QoS) for subscribers
and an income for the operators as well. Therefore, the automatic gen-
eration of frequency plans in real GSM networks is of great importance
for present GSM operators. This is known as the Automatic Frequency
Planning (AFP) problem. In this paper, we focus on solving this prob-
lem for a realistic-sized, real-world GSM network by using Evolutionary
Algorithms (EAs). To be precise, we have developed a (1, λ) EA for
which very specialized operators have been proposed and analyzed. Re-
sults show that this algorithmic approach is able to compute accurate
frequency plans for real-world instances.

1 Introduction

The Global System for Mobile communication (GSM) [1] is an open, digital cel-
lular technology used for transmitting mobile voice and data services. GSM is
also referred to as 2G, because it represents the second generation of this tech-
nology, and it is certainly the most successful mobile communication system. In-
deed, by mid 2006 GSM services are in use by more than 1.8 billion subscribers1

across 210 countries, representing approximately 77% of the world’s cellular mar-
ket. It is widely accepted that the Universal Mobile Telecommunication System
(UMTS) [2], the third generation mobile telecommunication system, will coex-
ist with the enhanced releases of the GSM standard (GPRS [3] and EDGE [4])

� This work has been partially funded by the Ministry of Science and Technology and
FEDER under contract TIN2005-08818-C04-01 (the OPLINK project).

1 http://www.wirelessintelligence.com/
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at least in the first phases. Therefore, GSM is expected to play an important
role as a dominating technology for many years.

The success of this multi-service cellular radio system lies in efficiently using
the scarcely available radio spectrum. GSM uses Frequency Division Multiplex-
ing and Time Division Multiplexing schemes to maintain several communica-
tion links “in parallel”. The available frequency band is slotted into channels (or
frequencies) which have to be allocated to the elementary transceivers (TRXs)
installed in the base stations of the network. This problem is known as the Auto-
matic Frequency Planning (AFP) problem, the Frequency Assignment Problem
(FAP), or the Channel Assignment Problem (CAP). Several different problem
types are subsumed under these general terms and many mathematical models
have been proposed since the late sixties [5,6,7]. This work is focussed on con-
cepts and models which are relevant for current GSM frequency planning [8] and
not on simplified models of the abstract problem. In GSM, a network operator
has usually a small number of frequencies (few dozens) available to satisfy the
demand of several thousands TRXs. A reuse of these frequencies is therefore
unavoidable. However, frequency reuse is limited by interferences which could
lead the quality of service (QoS) for subscribers to be reduced to unsatisfactory
levels. Consequently, the automatic generation of frequency plans in real GSM
networks is a very important task for present GSM operators not only in the ini-
tial deployment of the system, but also in subsequent expansions/modifications
of the network, solving unpredicted interference reports, and/or handling antic-
ipate scenarios (e.g. an expected increase in the traffic demand in some areas).
Additionally, several interference reduction techniques (e.g. frequency hopping,
discontinuous transmission, or dynamic power control) [8] have been proposed
to enhance the capacity of a given network while using the same frequency spec-
trum. These techniques are currently in use in present GSM networks and they
must be carefully considered in AFP problems because they allow both the QoS
for subscribers and the income of the operators to be increased.

The AFP problem is a generalization of the graph coloring problem, and thus
it is NP-hard [9]. As a consequence, using exact algorithms to solve real-sized
instances of AFP problems is not practical, and therefore other approaches are
required. Many different methods have been proposed in the literature [5] and,
among them, metaheuristic algorithms have proved to be particularly effective.
Metaheuristics [10,11] are stochastic algorithms that sacrifice the guarantee of
finding optimal solutions for the sake of (hopefully) getting accurate (also opti-
mal) ones in a reasonable time. This fact is even more important in commercial
tools, in which the GSM operator cannot wait for long times to get a frequency
plan (e.g. several weeks). Our approach here is to use Evolutionary Algorithms
(EAs) [12]. However, it has been reported in the literature that classical EA
crossover operators do not work properly for this problem [13,14]. Our proposal
is therefore a fast and accurate (1, λ) EA (see [15] for details on this notation)
in which there is no need for recombining individuals. A (1, λ) EA is an ap-
proach that either shows population-based evolutionary capabilities and a low
cost per iteration (similar to Simulated Annealing and other trajectory based

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



110 F. Luna et al.

algorithms). These two are the reasons for choosing this algorithm instead of a
regular (μ, λ) EA (like regular GAs) of (1,1) EA (like greedy approaches). The
main contribution of this work is not only using a real-world GSM network in-
stance with real data and realistic size (more than 2600 TRXs to be assigned
just 18 frequencies) but also that the tentative frequency plans manipulated by
the EA are evaluated with a commercial tool which uses accurate models for
all the system components (signal propagation, TRX, locations, etc.) and actu-
ally deployed GSM interference reduction technologies such as those mentioned
above. Both the data as well as the simulator are provided by Optimi Corp.™ .
The point here is that standard benchmarks like the Philadelphia instances,
CELAR, and COST 259 [6] do not consider such technologies and therefore
most of the proposed optimization algorithms are rarely faced with a real GSM
frequency planning problem. We have implemented specialized operators for the
(1, λ) EA in which precise network information has been used. Finally, different
configurations of the algorithm (λ = 10 and λ = 20) showing different bal-
ances between intensification/diversification have been tested. The results point
out that our approach is able to compute accurate frequency plans that can be
directly deployed in the real GSM network used.

The paper is structured as follows. In the next section, we provide the reader
with details on the frequency planning in GSM networks. Section 3 describes
the algorithm proposed along with the different operators used. The results of
the experiments are analyzed in Section 4. Finally, conclusions and future lines
of research are discussed in the last section.

2 Frequency Planning in GSM Networks

This section is devoted to presenting details on the frequency planning task
for a GSM network. We first provide the reader with a brief description of the
GSM architecture. Next, we give the relevant concepts to the frequency planning
problem that will be used along this paper.

2.1 The GSM System

An outline of the GSM network architecture is shown in Fig. 1. As it can be seen,
GSM networks are built out of many different components. The most relevant
ones to frequency planning are the Base Transceiver Station (BTS) and the
transceivers (TRXs). Essentially, a BTS is a set of TRXs. In GSM, one TRX is
shared by up to eight users in TDMA (Time Division Multiple Access) mode.
The main role of a TRX is to provide conversion between the digital traffic data
on the network side and radio communication between the mobile terminal and
the GSM network. The site at which a BTS is installed is usually organized in
sectors: one to three sectors are typical. Each sector defines a cell.

The solid lines connecting components in Fig. 1 carry both traffic informa-
tion (voice or data) as well as the “in-band” signaling information. The dashed
lines are signaling lines. The information exchanged over these lines is necessary
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Fig. 1. Outline of the GSM network architecture

for supporting user mobility, network features, operation and maintenance, au-
thentication, encryption, and many other functions necessary for the network’s
proper operation. Fig. 1 shows the different network components and interfaces
within a GSM network.

2.2 The Automatic Frequency Planning Problem

The frequency planning is the last step in the layout of a GSM network. Prior
to tackling this problem, the network designer has to address some other issues:
where to install the BTSs or how to set configuration parameters of the an-
tennas (tilt, azimuth, etc.), among others [16]. Once the sites for the BTSs are
selected and the sector layout is decided, the number of TRXs to be installed
per sector has to be fixed. This number depends on the traffic demand which the
corresponding sector has to support. The result of this process is a quantity of
TRXs per cell. A channel has to be allocated to every TRX and this is the main
goal of the AFP [8]. Essentially, three kinds of allocation exist: Fixed Channel
Allocation (FCA), Dynamic Channel Allocation (DCA), and Hybrid Channel
Allocation. In FCA, the channels are permanently allocated to each TRX, while
in DCA the channels are allocated dynamically upon request. Hybrid Channel
Allocation schemes (HCA) combine FCA and DCA. Neither DCA nor HCA are
supported in GSM, so we only consider FCA.

We now explain the most important parameters to be taken into account in
GSM frequency planning. Let us consider the example network shown in Fig. 2, in
which each site has three installed sectors (e.g. site A operates A1, A2, and A3).
The first issue is the implicit topology which results from the previous steps in the
network design. In this topology, each sector has an associated list of neighbors
containing the possible handover candidates for the mobile residing in a specific
cell. These neighbors are further distinguished into first order (those which can
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Fig. 2. An example of GSM network

potentially provoke strong interference to the serving sector) and second order
neighbors. In Fig. 2, A2 is the serving sector and the first order neighbors defined
are A1, A3, C2, D1, D2, E2, F3, G1, G2, and B1′′′, whereas, if we consider C2,
second order neighbors of A2 are F1, F2, C1, C3, D2′, D3′, A3′′, B1′′, B3′′,
G1′′, G3′′, and E1′′′.

As stated before, each sector in a site defines a cell; the number of TRXs
installed in each cell depends on the traffic demand. A valid channel from the
available spectrum has to be allocated to each TRX. Due to technical and regu-
latory restrictions, some channels in the spectrum may not be available in every
cell. They are called locally blocked and they can be specified for each cell.

Each cell operates one Broadcast Control CHannel (BCCH), which broadcasts
cell organization information. The TRX allocating the BCCH can also carry
user data. When this channel does not meet the traffic demand, some additional
TRXs have to be installed to which new dedicated channels are assigned for
traffic data. These are called Traffic CHannels (TCHs).

In GSM, significant interference may occur if the same or adjacent channels
are used in neighboring cells. Correspondingly, they are named co-channel and
adj-channel interference. Many different constraints are defined to avoid strong
interference in the GSM network. These constraints are based on how close
the channels assigned to a pair of TRXs may be. These are called separation
constraints, and they seek to ensure the proper transmission and reception at
each TRX and/or that the call handover between cells is supported. Several
sources of constraint separation exists: co-site separation, when two or more
TRXs are installed in the same site, or co-cell separation, when two TRXs serve
the same cell (i.e., they are installed in the same sector).
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This is intentionally an informal description of the AFP problem in GSM
networks. It is out the scope of this work to propose a precise model of the
problem, since we use a proprietary software which is aware of all these concepts,
as well as the consideration of all the existing interference reduction techniques
developed for efficiently using the scarce frequency spectrum available in GSM.

3 EAs for Solving the AFP Problem

EAs have been widely used for solving many existing flavors of the frequency
assignment problem [5,6,8,17]. However, it has been shown that well known
crossover operators such as single point crossover do not perform well on this
problem [13]. Indeed, it does not make sense for a frequency plan to randomly
exchange two different, possibly non-related assignments. Our approach here is
to use an (1, λ) Evolutionary Algorithm, in which the recombination operator is
not required. Next, we first describe the generic (μ, λ) EA. The solution encoding
used, the fitness function, the method used for generating the initial solutions,
and several proposals for perturbing individuals are discussed afterwards.

3.1 (μ, λ) Evolutionary Algorithm

This optimization technique firstly generates μ initial solutions. Next, the algo-
rithm perturbs and evaluates these μ individuals at each iteration, from which
λ new ones are obtained. Then, the best μ solutions taken from the newly gen-
erated λ individuals are moved to the next iteration (note that μ is not bigger
than λ). An outline of the algorithm is shown in Fig. 3. Other works using a
similar algorithmic approach for the AFP problem can be found in [13,18].

As stated before, the configurations used in this work employ a value of
μ = 1. The seeding procedure for generating the initial solution and the per-
turbation operator are the core components defining the exploration capabilities

1: P = new Population(μ);
2: PAux = new Population(λ);
3: init(P);

4: evaluate(P);

5: for iteration = 0 to NUMBER OF ITERATIONS do

6: for i = 1 to λ do

7: individual = select(P);

8: perturbation = perturb(individual);

9: evaluate(perturbation);

10: PAux = addTo(PAux,perturbation);

11: end for

12: P = bestIndividuals(PAux,μ);
13: end for

Fig. 3. Pseudocode of the (μ, λ) EA
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of the (1, λ) EA. The definition of these two procedures is detailed below in
Sections 3.4 and 3.5.

3.2 Solution Encoding

The solution encoding determines both the search space and the subsequent set
of search operators that can be applied during the exploration of this search
space. Let T be the number of TRXs needed to meet the traffic demand of a
given GSM network. Each TRX has to be assigned a channel. Let Fi ⊂ N be
the set of available channels for the transceiver i, i = 1, 2, 3, . . . , T . A solution p
(a frequency plan) is encoded as a T -length integer array p = [f1, f2, f3, . . . , fT ] ,
p ∈ F1 × F2 × · · · × FT , where fi ∈ Fi is the channel assigned to TRX i. The
fitness function (see next section) is aware of adding problem specific information
to each transceiver, i.e., whether it allocates either a BCCH channel or a TCH
channel, whether it is a frequency hopping TRX, etc.

As an example, Fig. 4 displays the representation of a frequency plan p for the
GSM network shown in Fig. 2. We have assumed that the traffic demand in the
example network is fulfilled by one single TRX per sector (TRX A1, TRX A2, etc.).

3.3 Fitness Function

As it was stated before, we have used a proprietary application provided by
Optimi Corp.™, that allows us to estimate the performance of the tentative
frequency plans generated by the evolutionary optimizer. Factors like Frame
Erasure Rate, Block Error Rate, RxQual, and BER are evaluated. This com-
mercial tool combines all aspects of network configuration (BCCHs, TCHs, etc.)
including interference reduction techniques (frequency hopping, discontinuous
transmission, etc.) in a unique cost function, C, which measures the impact of
proposed frequency plans on capacity, coverage, QoS objectives, and network
expenditures. This function can be roughly defined as:

C =
∑

v

(CostIM (v) ·E (v) + CostNeighbor (v)) , (1)

that is, for each sector v which is a potential victim of interference, the associated
cost is composed of two terms, a signaling cost computed with the interference
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matrix (CostIM (v)) that is scaled by the traffic allocated to v, E (v), and a cost
coming from the current frequency assignment in the neighbors of v. Of course,
the lower the total cost the better the frequency plan, i.e., this is a minimization
problem.

3.4 Solution Initialization

Individuals are initialized site by site using a constructive method. For each site
in the GSM network, a hopefully optimal frequency assignment is heuristically
computed independently and without taking into account possible interferences
from any other site. A simple greedy heuristic [5] is the method used (see Fig. 5
for its pseudocode). Given a site s, all its TRXs installed are randomly ranked
(line 3). Then, random frequencies are assigned to the TRXs so that neither co-
channel nor adjacent-channel interferences are provoked (lines 5 and 6). We want
to note that the available radio spectrum is large enough to generate optimal
frequency assignments within a site most times, i.e., we are applying the greedy
heuristic independently only to the TRXs within a site. This way we avoid
the most important source of strong interference through the network: those
involving TRXs installed in the same site or sector.

1: trxs = frequencies = ∅;
2: trxs = TRXsFromSite(s);

3: random shuffle(trxs);

4: for t in trxs do

5: f = chooseInterferenceFreeFrequency(t,frequencies);

6: assign(t,f);

7: frequencies = insert(frequencies,t);

8: end while

Fig. 5. Pseudocode of a greedy heuristic

Finally, the individual undergoes a heuristic which is based on the Dsatur
with Costs heuristic [8]. Here, all the TRXs of the network are ranked so the
hardest ones to deal with are assigned first. The measure used for “hardest to
deal with” consists of accurate information given by the simulator about the
importance of the TRXs (interference provoked, capacity overload, etc.), rather
than using the generalization of saturation and space degrees of Dsatur with
Costs. Next, each TRX is assigned the frequency presently incurring the least
additional interference. The main goal of this phase is to reach “good” solutions
in short times. This is usually a requirement within commercial applications,
the context of this work. Using this greedy phase is also the main reason to
use the (1, λ) strategy. Indeed, this greedy step leads the search towards a local
minimum and it makes the non-elitist (1, λ) strategy suitable for the search
because it avoids getting stuck in this region of the search space.
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3.5 Perturbation Operator

In (μ, λ) EAs, the perturbation operator largely determines the search capa-
bilities of the algorithm. The mechanism proposed is based on modifying the
channels allocated to a number of transceivers. It first has to select the set of
TRXs to be modified and, next, it chooses the new channels which will be allo-
cated. The two proposed methods are as follows:

1. TRX Selection: At each operation, one single site is perturbed. The way of
selecting the site is to choose first a TRX t and then the site considered is
the one at which t is installed. Two strategies for choosing t have been used:
(a) Binary Tournament: It uses the same information from the simulator as

the last greedy operation in the initialization method (see Section 3.4).
Given two randomly chosen TRXs, this strategy returns the “hardest to
deal with”, i.e., the one which is preferred to be updated first. With this
configuration, the perturbation mainly promotes intensification.

(b) Random: The transceiver is randomly chosen using a uniform distribu-
tion from the whole set of TRXs. This strategy enhances the diversifica-
tion capabilities of the algorithm.

Since λ offsprings have to be generated at each step of the algorithm, we
have studied several configurations in which λ1 perturbations use the first
strategy while λ2 use the second one, so that λ1 + λ2 = λ. This will allow us
to test different diversification/intensification tradeoffs in the EA.

2. Frequency Selection: Let s be the site chosen in the previous step. Firstly,
s is assigned a hopefully interference-free frequency planning with the same
strategy used in the initialization method (Fig. 5). We have therefore avoided
the strongest intra-site interferences. The next step aims at refining this
frequency plan by reducing the interferences with the neighboring sites. The
strategy proceeds iterating through all the TRXs installed in s. Again, these
TRXs are ranked in decreasing order with the accurate information coming
from the simulator. Finally, for each TRX t, if a frequency f , different from
the currently assigned one, allows both to keep the intra-site interference-
free assignment and to reduce the interference from the neighbors, then t
is assigned f ; otherwise, it does nothing. All the available frequencies for t
are examined. A pseudocode of the method is included in Fig. 6. Note that
this procedure guarantees that no interference will occur among the TRXs
installed in a site.

4 Experiments

In this section we turn to present the experiments conducted to evaluate the
proposed (1, λ) EAs. We firstly give some details of the GSM network instance
used. The experiments with different configurations of the evolutionary opti-
mizer are presented and analyzed afterwards. We have made 30 independent
runs of each experiment. The results included are the median, x̃, and interquar-
tile range, IQR, as measures of location (or central tendency) and statistical
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1: trxs = TRXsFromSite(s);

2: applySimpleGreedyHeuristic(s);

3: trxs = rank(trxs);

4: for t in trxs do

5: f = chooseMinimumInterferenceFrequency(t,neighbors(s));

6: assign(t,f);

7: end for

Fig. 6. Pseudocode of frequency selection strategy

dispersion, respectively. Since we are dealing with stochastic algorithms and we
do want to provide the results with statistical confidence, the following analysis
has been performed in all this work. Firstly, a Kolmogorov-Smirnov test has been
performed and it shows that all but one dataset follow a normal (gaussian) dis-
tribution. Therefore, the non-parametric Kruskal-Wallis test has been used. We
have considered confidence level of 95% (i.e., significance level of 5% or p-value
under 0.05), which means that the differences are unlikely to have occurred by
chance with a probability of 95%.

4.1 GSM Instance Used

Here, we want to provide the reader with details on the AFP instance which is
being solved. The GSM network used has 711 sectors with 2,612 TRXs installed.
That is, the length of the individuals in the EA is 2,612. Each TRX has 18 avail-
able channels (from 134 to 151). Figure 7 displays the network topology. Each
triangle represents a sectorized antenna in which operate several TRXs. As it
can be seen, the instance presents clustered plus non-clustered zones where no
classical hexagonal cell shapes exist (typically used in simplified models of the
problem). Additional topological information indicates that, on average, each
TRX has 25.08 first order neighbors and 96.60 second order neighbors, thus
showing the high complexity of this AFP instance, in which the available spec-
trum is much smaller than the average number of neighbors. Indeed, only 18
channels can be allocated to TRXs with 25.08 potential first order neighbors.
We also want to remark that this real network operates with advanced inter-
ference reduction technologies and it employs accurate interference information
which has been actually measured at a cell-to-cell level (neither predictions nor
distance-driven estimations are used).

4.2 Results

We have conducted different experiments with several configurations of the
(1, λ) EA. Firstly, we have used two different values for λ, λ = 10 and λ = 20.
For each value, five different schemes for generating the λ individuals have been
tested by using several combinations of the two strategies proposed for select-
ing the TRXs (Section 3.5). All the configurations of the (1, λ) EA stop when
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Fig. 7. Topology of the GSM instance used

100,000 function evaluations have been computed. Table 1 includes the obtained
results, having the best one a grey colored background.

Let us start analyzing the results of our evolutionary algorithm. The config-
uration of the (1,10) EA in which the 10 offsprings are generated by using the
Tournament strategy for selecting the TRXs (λ1 = 10) has reached the best
(lowest) cost: a value of 4680. The “+” symbol in the last row shows a successful
Kruskal-Wallis test indicating that the differences are statistically significant.
This configuration has the stressed intensification capabilities out of the 10 ones
proposed due to two facts. On the one hand, since all of them run until 100,000
function evaluations have been computed, (1, 10) EA performs 10,000 iterations
while the (1, 20) EA executes 5,000. Indeed, iterating for longer time means a
larger exploitation of the search experience. On the other hand, the perturbation
also uses the configuration with the more accentuated search intensification fea-
tures: the Tournament selection strategy for the ten offsprings, in which those
TRXs incurring in more problems (capacity overload, interferences, etc.) are
chosen first. So, when the (1, λ) EAs face the real-world AFP problem, they are
able to profit from search intensification strategies which allow more accurate fre-
quency plans to be computed. Note that, since both the traffic data and network
configuration remain the same, a cost reduction means that fewer interferences
exist in the network, i.e., several co-channels and adj-channel interferences have
vanished. In this real-world AFP context, reducing this cost function leads the
GSM operator to two possible scenarios. If the traffic demand is kept (or it is
unusually decreased), the QoS for subscribers becomes higher. Otherwise, if this
demand is increased and additional TRXs must be added, the network is ready
to address its expansion also getting an acceptable QoS. The latter is specially
important for the operators because it results in higher income for them.

Two additional facts can be deduced from Table 1. Firstly, all configurations
of the (1, 10) EA improve upon any config where λ = 20. Averaging over all
their configurations, (1,10) EAs get a cost of 4696.4, whereas (1,20) EAs obtain
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Table 1. AFP costs when using ten different configurations of the (1, λ) EA

Algorithm
Config Costs
λ1 λ2 x̃ IQR

(1,10) EA

0 10 4701 88
3 7 4688 91
5 5 4708 104
7 3 4705 113
10 0 4680 148

(1,20) EA

0 20 4725 141
5 15 4741 100
10 10 4763 138
15 5 4743 115
20 0 4787 151

Kruskal-Wallis test +

a value 4751.8, which is a 1.17% worse. As it is explained before, this is because
of the enhanced intensification capabilities of the λ = 10 setting. Secondly, the
low IQR in all the cases indicates that all the proposals are very robust, reaching
very accurate frequency plans in all the independent runs. Finally, we also want
to mention that the execution times of all the (1, λ) EAs are around 9,400 seconds
on a Pentium IV, 2.4 GHz, and 512 MB of RAM. This value is the same for all
the algorithms since all of them compute the same number of function evaluation
and it implies a large effort to perform all these experiments (more than 32 days
of computation).

5 Conclusions and Future Work

This paper describes the utilization of (1, λ) EAs to solve the AFP problem
in a real-world GSM network composed of 2,612 transceivers. Instead of using
a mathematical formulation of this optimization problem, we have used a com-
mercial application which allows the target frequency plannings to be accurately
evaluated in a real scenario where current technologies are in use (e.g. frequency
hopping, discontinuous transmission, dynamic power control, etc.).

We have implemented advanced operators for initializing the individuals and
for generating the offspring. Then, different configurations for the evolutionary
algorithms have been proposed and evaluated (λ = 10, λ = 20, different set-
tings of the perturbation operator). The results show that those configurations
promoting intensification have reached the best (lowest) costs, i.e., they have
computed the frequency plans with the lower interference in the network.

As future work, we plan to develop new search operators and new metaheuris-
tic algorithms to solve this problem. Their evaluation with the current instance
and other real-world GSM networks is also an ongoing research line. The for-
mulation of the AFP problem as a multiobjective optimization problem will be
investigated as well.
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Abstract. In this paper we present a metaheuristic procedure constructed for the 
special case of the Vehicle Routing Problem in which the demands of the 
clients can be split, i.e., any client can be serviced by more than one vehicle. 
The proposed algorithm, based on the scatter search methodology, produces a 
feasible solution using the minimum number of vehicles. The results obtained 
compare with the best results known up to date on a set of instances previously 
published in the literature. 

1   Introduction 

In this paper we consider a variant of the Vehicle Routing Problem (VRP) in which 
the demand of any client can be serviced by more than one vehicle, the Split Delivery 
Vehicle Routing Problem (SDVRP). This relaxation of the classical VRP was first 
proposed by Dror and Trudeau [8] and [9], who showed that important savings on the 
total solution cost could be obtained as well as a reduction in the total number of 
vehicles used in the solution. They also showed that this problem is also NP-hard. 

Dror, Laporte and Trudeau [7] proposed a branch and bound algorithm for its exact 
resolution. A polyhedral study and a lower bound for the SDVRP were presented in 
[5], while some applications can be found in [15] and [16]. A worst-case study was 
conducted by Archetti, Savelsbergh and Speranza [2] as well as an evaluation of the 
situations when it pays to split the demands [3]. A tabu search procedure was 
developed by Archetti, Hertz and Speranza [1] and more recent heuristic procedures 
have been proposed by Wasil, Golden and Chen [17] and Archetti, Savelsbergh and 
Speranza [4]. 

The Vehicle Routing Problem with Split Demands is defined on an undirected and 
complete graph G = (V,E), where V = {0,1,2,…n} is the set of vertices (vertex 0 
denotes the depot and 1,…,n represent the set of clients). Each edge e = (i,j) has an 
associated cost or distance ce between clients i and j. Moreover, each vertex has a 
known demand di (d0=0) and there is a fleet of identical vehicles of capacity Q 
located at the depot. The objective is to find a set of routes, each one beginning and 
ending at the depot, such that: 

• The demand of every client is satisfied, 
• The sum of the demands serviced by any vehicle does not exceed its capacity Q, 

and 
• The total cost, i.e. the sum of the costs of every edge in every route, is minimized.  
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Other common variants of the VRP consider a servicing cost si for each client and 
an upper bound on the total distance traveled by any vehicle. The SDVRP with time 
windows has been studied in [10], where also special graphs have been considered. 

We consider in this paper just the SDVRP version defined above, which is a very 
difficult problem but presents an outstanding characteristic, that makes it different 
from the classical VRP: there is always a feasible solution using the minimum number 
of vehicles k. It is easy to see that this minimum number corresponds to the smallest 

integer greater than or equal to 
Q

d
i

i∑ . This is not always true if the demand of a client 

can not be split, since in this case there is a Bin Packing Problem involved. To the 
explicit objective of minimizing the total solution cost, we add the implicit one of 
minimizing the number of vehicles used in the solution. A term in the objective 
function penalizing the excess of vehicles could be added, or bicriteria techniques 
could be taken into account, since it is possible in some instances to decrease the total 
cost by increasing the number of vehicles. Instead, we propose a Scatter Search 
procedure following the framework presented in [12] and [13], that generates a 
population of feasible solutions with the minimum number of routes (vehicles). 

The paper is organized as follows: in Section 2 we describe the main features of 
the proposed metaheuristic and in Section 3 we present the computational results. 
Conclusions and future work are summarized in Section 4. 

2   A Scatter Search Procedure 

In this section we describe the main features of a Scatter Search procedure designed 
for the SDVRP. This is, as far as we know, the first time that such a technique is 
applied to this routing problem.  

2.1   Creating a Population 

We have adapted two standard VRP heuristic procedures to the split demands case in 
order to obtain SDVRP feasible solutions. The first one, called here Big Tour, uses the 
Lin and Kernighan [14] heuristic to build a giant tour through the n clients and the 
depot. From this tour it is always possible to obtain k routes and, thus, a feasible 
SDVRP solution: Clients are grouped into routes following the tour and the last client in 
a given route is the one that usually produces an overload on the vehicle; in this case the 
client’s demand is split so that the total demand serviced by the vehicle equals Q and a 
new vehicle leaves the depot, visits this client again and follows the tour.  

We can take into account the difference between the total capacity kQ and the total 
demand and adjust the load in each vehicle so that the solution finally obtained uses k 
balanced (in terms of load) routes. In this way, we avoid obtaining a solution having 
k-1 routes with load Q and a last route with usually a very small load. 

The same Big Tour is used to generate additional solutions, all of them following 
the same sequence of clients but starting each one at a different client. In order to 
obtain solutions that differ substantially, the starting clients are selected in a 
nonconsecutive order. 
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The procedure Big Tour is designed to generate half of the population of feasible 
solutions, of size P. 

The second procedure is a modified and accelerated version of the classical Clarke 
and Wright parallel savings algorithm [6]. According to this procedure, from an initial 
solution consisting of n return trips to each client, the best available saving, computed 
as sij = c0i + c0j – λcij , is used to merge the single routes (0,i,0) and (0,j,0) into a new 
route (0,i,j,0) and the procedure is repeated until no merge is feasible, in terms of 
vehicle capacity, or there are no more available savings. For each client, its 
neighborhood is computed as the subset of its closest clients, and only these savings 
are calculated. We allow to split the demand of a client l only when the best available 
saving corresponds to merging a given route r with a return trip from client l and the 
total demand exceeds the vehicle capacity Q; in this case, part of the demand of client 
l is serviced in route r and we maintain a return trip from client l with the unsatisfied 
demand. The procedure does not guarantee a feasible solution using the minimum 
number of vehicles but in all our computational experiences, feasible solutions using k 
vehicles are obtained. In order to generate more than one solution, we prohibit half of 
the savings used in a solution when computing the next one. Savings are prohibited 
with probabilities directly proportional to the frequency of use of each saving in the 
previously generated solutions. This procedure generates half of the population of 
feasible solutions. 

2.2   Improving a Feasible Solution 

Local search is applied to each solution in the original population in order to reduce 
its cost, if possible. We have implemented procedures for client moves, such as the   
1-1 interchanges, consisting of interchanging one client from a route with another 
client in another route, and 1-0 exchanges, consisting of shifting one client from one 
route to another route. These moves are applied to every non split client. We have 
also implemented two-split changes, that take a client out from every route visiting it 
and look for a pair of routes that, jointly, could service its demand. When such 
improvements are no longer possible, the routes in the solution are re-optimized using 
a 2-opt procedure or the more complex Lin and Kernighan algorithm. The same 
procedures are applied to a feasible solution entering the reference set, as described in 
the next subsection. 

2.3   The Reference Set 

The P feasible solutions in the population are ordered according to the cost and b of 
them are selected to be in the reference set. One half corresponds to the best feasible 
solutions and the remaining solutions add the necessary diversity to this set, since 
they correspond to those solutions in the population that are the most different when 
compared to the best ones. As a measure of the difference between two solutions we 
compute the total number of edges in one solution but not in the other. Each pair of 
solutions in the reference set is combined to produce another solution, that enters the 
set only when its cost is greater that the cost of the worst solution, that is eliminated. 
The overall procedure stops when, after every possible combination (one iteration), no 
new feasible solution enters in the reference set. 
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2.4   The Combination Method 

We have devised a procedure that captures the essential characteristics of a feasible 
SDVRP solution and tries to maintain those that could be satisfied by the good 
solutions. In order to do that, for each solution in the reference set we define a set of 
critical clients, consisting of: 

1. all its split clients, 
2. all the clients (if distinct) in routes with just 1 or 2 clients, 
3. the client (if distinct) whose removal from a route produces the greatest saving 

cost, for each  route with at least 3 clients, and finally 
4. each client (if distinct) such that at least one among its three closest neighbours 

belongs to a different route. 

When combining feasible solutions A and B in the reference set (note that 
combining solutions B and A is also possible and produces a different combination) 
we consider, in turn, a critical client in A, in classes 1 to 3 above, and we apply the 
recommendation for this client in solution B. If it is a split client in B, we consider 
that there is no recommendation and so we take the next critical client in A; otherwise 
we consider its two adjacent clients, say α and β, and we route in the combined 
solution the critical client in the best position, either after client α or just before client 
β. Once the insertion is made, we declare tabu any move involving the critical client 
in the combined solution. 

When all the critical clients of A have been considered, the combination method 
has produced a new and maybe unfeasible solution because of the load in each route. 
A routine is then applied that considers some non tabu moves aimed at obtaining a 
feasible solution.  

Each time a feasible solution is obtained as a combination of two solutions in the 
reference set, the improve procedures described in subsection 2.2 are applied. Once 
all the possible comparisons have been considered, if no new solution enters the 
reference set, we augment the set of critical clients of each solution in the reference 
set by including those in case 4 above. Then, all the possible combinations are again 
considered. The new neighborhood created for each solution replaces the usual 
rebuilding phase. 

3   Computational Experiments 

We present the results obtained by the Scatter Search procedure on a set of instances 
following the proposal made by Dror and Trudeau. We have repeated the generation 
parameters used by Archetti et al, so that the results can be compared.  

3.1   The Instances 

In order to test our algorithm, we have considered the same set of instances used by 
Archetti, Hertz and Speranza [1]. They generated the instances starting from the VRP 
problems 1 to 5, 11 and 12 taken from [11], that have between 50 and 199 customers, 
and computed the demands of the customers in the following way. First, two 
parameters α and γ (α ≤ γ) are chosen in the interval [0,1]. Then, the demand di of 
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customer i is set equal to di = ⎣α Q+δ (γ−α) Q⎦, where δ is a random number in [0,1]. 
As in [8], Archetti, Hertz and Speranza have considered the following combinations 
of parameters (α, γ): (0.01, 0.1), (0.1, 0.3), (0.1, 0.5), (0.1, 0.9), (0.3, 0.7) and (0.7, 
0.9). The procedure is equivalent to generate the demands of an instance in the 
interval (αQ, γQ). Considering the case where the original demands are not changed, a 
total of 49 instances is obtained. 

3.2   Computational Results 

Computational results are summarized in Table 1, which compares the results 
obtained by the Scatter Search procedure with those obtained with two Tabu Search 
(TS) algorithms presented in [1]. Comparisons with the results presented in [4] and 
[17] were not possible since the instances and other significant details were not 
available to the authors. Other characteristics of the feasible solutions are also 
included in the table. The first two columns show the instance name, which also 
indicates the number of clients, and the corresponding interval where demands have 
been generated. Instances in the first seven rows have original demands. Column 3 
presents the best value (z) obtained by our procedure SS; a value in bold indicates that 
this value is at least as good as all the ten values obtained by applying the SPLITABU 
or the SPLITABU-DT procedures ([1]). All the values have been obtained using as 
distance between clients i and j the cost cij: 

( )22 )()(10000 jijiij yyxxroundc −+−=  (1) 

Column 4 indicates the number of vehicles in the feasible solution obtained (k), 
which corresponds always to the minimum number. Total time in seconds is presented 
in column 5 (T). The procedure was implemented in C and run on a PC Pentium IV, 
1Gb Ram, CPU 2.40 GHz. 

The minimum solution value (zmin) among the five executions that each instance 
is run with SPLITABU and SPLITABU-DT is shown in columns 6 and 9, 
respectively. Similarly, columns 7 and 10 present the average solution value for the 5 
runs (zmean). Columns 8 and 11 give the average times, in seconds of a PC Pentium 
IV, 256 Mb Ram, CPU 2.40 GHz. Finally, column 12 gives the number of vehicles in 
the feasible solution as presented in [2].  

Considering the original demands, the quality of the solutions is similar and every 
solution uses the minimum number of vehicles. Note that the values obtained by the 
Scatter Search algorithm were produced maintaining all the parameters unchanged for 
all the instances and only one execution per instance, in order to make a fair 
comparison. The number of vehicles used is not available for both TS methods on the 
second group of instances and the solutions obtained by the SS are slightly better than 
the best solutions obtained with the TS procedures. When the demand is generated in 
the interval (0.1Q, 0.3Q) the solution’s quality is similar but the number of vehicles in 
the solutions obtained with the Tabu Search procedures is no longer the minimum one 
and the difference reaches 3 vehicles in 2 out of 6 instances. On the remaining 
instances, the SS solutions are worse than the ones obtained with the TS procedures.  
However, this could be explained by the fact that the SS algorithm is designed to find 
solutions with the minimum number of vehicles while the TS algorithms minimize the 
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total distance traveled and note that the solutions obtained with the TS methods 
always use a bigger number of vehicles that, in some cases increases up to 14 vehicles 
as in instance p5-199 with demands in (0.1Q, 0.9Q). 

4   Conclusions and Further Research 

The first results obtained with the Scatter Search procedure indicate that it is able to 
obtain good feasible solutions within a reasonable computing time. When the 
demands are well over half the capacity of the vehicle the values of the solutions are 
not so good, but note that we only consider solutions with the minimum number of 
vehicles and we think that this fact compensates having solutions with longer routes. 
The set of published and available instances is limited and quite small. In the future, 
we want to work on the elaboration of bigger test instances that will be available and 
include some other refinements to the procedure. Among them, another generator of 
feasible solutions and more procedures to be applied to the unfeasible solutions 
produced in the combination phase. 
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Abstract. Many instances of NP-hard problems can be solved efficiently
if the treewidth of their corresponding graph is small. Finding the opti-
mal tree decompositions is an NP-hard problem and different algorithms
have been proposed in the literature for generation of tree decompositions
of small width. In this paper we propose a novel iterated local search al-
gorithm to find good upper bounds for treewidth of an undirected graph.
We propose two heuristics, and their combination for generation of the
solutions in the construction phase. The iterated local search algorithm
further includes the mechanism for perturbation of solution, and the
mechanism for accepting solutions for the next iteration. The proposed
algorithm iteratively applies the heuristic for finding good elimination
ordering, the acceptance criteria, and the perturbation of solution. We
proposed and evaluated different perturbation mechanisms and accep-
tance criteria. The proposed algorithms are tested on DIMACS instances
for vertex coloring, and they are compared with the existing approaches
in literature. Our algorithms have a good time performance and for 17
instances improve the best existing upper bounds for the treewidth.

1 Introduction

The concept of tree decompositions is very important due to the fact that many
instances of constraint satisfaction problems and in general NP-hard problems
can be solved in polynomial time if their treewidth is bounded by a constant.
The process of solving problems with bounded treewidth includes two phases. In
the first phase the tree decompositions with small upper bound for treewidth are
generated. The second phase includes solving a problem (based on the generated
tree decomposition) with a particular algorithm such as for example dynamic
programming. The efficiency of solving of problem based on its tree decomposi-
tions depends from the width of tree decompositions. Thus it is of high interest
to generate tree decompositions with small width.

In this paper we investigate the generation of tree decompositions of undi-
rected graphs. The concept of tree decompositions has been first introduced by
Robertson and Seymour ([11]):

Definition 1. (see [11], [9]) Let G = (V, E) be a graph. A tree decomposition
of G is a pair (T, χ), where T = (I, F ) is a tree with node set I and edge set F ,
and χ = {χi : i ∈ I} is a family of subsets of V , one for each node of T , such
that

C. Cotta and J. van Hemert (Eds.): EvoCOP 2007, LNCS 4446, pp. 130–141, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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1.
⋃

i∈I χi = V ,
2. for every edge (v, w) ∈ E, there is an i ∈ I with v ∈ χi and w ∈ χi, and
3. for all i, j, k ∈ I, if j is on the path from i to k in T , then χi ∩ χk ⊆ χj.

The width of a tree decomposition is maxi∈I |χi| − 1. The treewidth of a graph
G, denoted by tw(G), is the minimum width over all possible tree decompositions
of G.

Figure 1 shows a graph G (19 vertices) and a possible tree decomposition of G.
The width of shown tree decomposition is 5.

1,11,17,19

5,6,7,8,9

3,4,5,6,7,8 12,16,17,18,19

11,12,17,18,191,2,3,4,5,6

12,15,16,18,19

12,13,14,15,18,197,9,10

Fig. 1. A graph G (left) and a tree decomposition of G (right)

For the given graph G the treewidth can be found from its triangulation.
Further we will give basic definitions, explain how the triangulation of graph
can be constructed, and give lemmas which give relation between the treewidth
and the triangulated graph.

Two vertices u and v of graph G(V, E) are neighbours, if they are connected
with an edge e ∈ E. The neighbourhood of vertex v is defined as: N(v) := {w|w ∈
V, (v, w) ∈ E}. A set of vertices is clique if they are fully connected. An edge
connecting two non-adjacent vertices in the cycle is called chord. The graph is
triangulated if there exist a chord in every cycle of length larger than 3.

A vertex of a graph is simplicial if its neighbours form a clique. An ordering
of nodes σ(1, 2, . . . , n) of V is called a perfect elimination ordering for G if for
any i ∈ {1, 2, . . . , n}, σ(i) is a simplicial vertex in G[σ(i), . . . , σ(n)] [3]. In [4] it is
proved that the graph G is triangulated if and only if it has a perfect elimination
ordering. Given an elimination ordering of nodes the triangulation H of graph G
can be constructed as following. Initially H = G, then in the process of elimination
of vertices, the next vertex in order to be eliminated is made simplicial vertex by
adding of new edges to connect all its neighbours in current G and H . The vertex is
then eliminated from G. The process of elimination of nodes from the given graph
G is illustrated in Figure 2. Suppose that we have given the following elimination
ordering: 10, 9, 8, . . .. The vertex 10 is first eliminated from G. When this vertex is
eliminated no new edges are added in the graph G and H (graph H is not shown in
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Fig. 2. Illustration of the elimination of nodes 10, 9, and 8 in process of constructing
of triangulated graph

the figure), as all neighbours of node 10 are connected. Further from the remained
graph G the vertex 9 is eliminated. To connect all neighbours of vertex 9, two new
edges are added in G and H (edges (5, 8) and (6, 7)). The process of elimination
continues until the triangulation H is obtained. A more detailed description of the
algorithm for constructing a graph’s triangulation for a given elimination ordering
is found in [9].

The treewidth of a triangulated graph is equal to the largest clique of triangu-
lated graph minus 1 ([5]). Calculation of the largest clique for the triangulated
graphs has complexity O(|V | + |E|) ([5]). For every graph G = (V, E), there
exists a triangulation of G, G = (V, E

⋃
Et), with tw(G) = tw(G) . Finding

the treewidth of a graph G is equivalent to finding a triangulation G of G with
minimum clique size. The last two lemmas can be found in [9].

1.1 Algorithms for Tree Decompositions

For the given graph and integer k, deciding whether the graph has a tree de-
composition with a treewidth at most k is an NP-hard problem [1]. To solve
this problem different complete and heuristic algorithms have been proposed in
the literature. Examples of complete algorithms for tree decompositions are [12]
and [6]. Gogate and Dechter [6] reported good results for tree decompositions
by using the branch and bound algorithm. They showed that their algorithm
is superior compared to the algorithm proposed in [12]. The branch and bound
algorithm proposed in [6] applies different pruning techniques, and provides any-
time solutions, which are good upper bounds for tree decompositions.

Heuristic techniques for generation of tree decompositions with small width
are mainly based on searching for a good perfect elimination ordering of graph
nodes. Several heuristics that run in polynomial time have been proposed for
finding a good elimination ordering of nodes. These heuristics select the ordering
of nodes based on different criteria, such as the degree of the nodes, the number
of edges to be added to make the node simplicial (the node which neighbours are
fully connected), etc. Maximum Cardinality Search (MCS) proposed by Tarjan
and Yannakakis ([13] constructs the ordering of nodes iteratively by picking the
next node which has the largest number of neighbors in the ordering (the ties are
broken randomly). The min-fill heuristics picks iteratively the node which adds
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the smallest number of edges when eliminated. Min-degree heuristic picks the
next vertex to be eliminated based on its degree. The next node to be eliminated
is chosen based on the smallest degree. According to [6] the min-fill heuristic
performs better than MCS and min-degree heuristic. Min-degree heuristic has
been improved by Clautiaux et al ([3] by adding a new criterion based on the
lower bound of the treewidth for the graph obtained when the node is eliminated.
For other types of heuristics based on the elimination ordering of nodes see [9].

Metaheuristic approaches have also been used for tree decompositions. Sim-
ulated annealing was used by Kjaerulff ([8]). Application of genetic algorithm
for tree decompositions is presented in [10]. A tabu search approach for gener-
ation of the tree decompositions has been proposed by Clautiaux et al [3]. The
authors reported good results for DIMACS vertex coloring instances ([7]). Their
approach improved the previous results in literature for 53% of instances. Some
of the results in [3] have been further improved by Gogate and Dechter [6]. The
reader is referred to [2] for other approximation algorithms, and the information
for lower bounds algorithms.

In this paper we propose new heuristic algorithms with the aim of improving
existing upper bounds for tree decompositions and reducing the running time
of algorithms for different problems. Two simple heuristics for searching in the
elimination ordering of nodes are proposed. These local heuristics are based
on changing of positions of nodes in ordering, which cause the largest clique
when eliminated. The proposed heuristics are exploited by a new iterated local
search algorithm in the construction phase. The proposed iterative local search
algorithm applies iteratively the construction heuristic and additionally includes
the perturbation mechanism and the acceptance criteria. These algorithms have
been applied in 62 DIMACS instances for vertex coloring. For several problems
we report new upper bounds for the treewidth, and for most of problems the
tree decomposition is generated in a reasonable amount of time. Our results
have been compared with the results reported in [9],[6], and [3], which to our
best knowledge report the best results known yet in literature considering the
width of tree decompositions for these instances. For up to date information for
the best upper and lower bounds for treewidth for different instances the reader
is referred to TreewidthLIB:http://www.cs.uu.nl/ hansb/treewidthlib/.

2 An Iterative Local Search Algorithm

As described in the previous section, the generation of tree decomposition with
small width can be done by finding an appropriate elimination ordering which
produces a triangulated graph with smallest maximum clique size. In this section
we present an algorithm which searches among the possible ordering of nodes to
find a small treewidth for the given graph. The algorithm contains a local search
heuristic for constructing a good ordering, and the iterative process, during
which the algorithm calls the local search techniques with the initial solution
that is produced in previous iteration. The algorithm includes also a mecha-
nism for acceptance of a candidate solution for the next iteration. Although the
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constructing phase is very important, choosing the appropriate perturbation in
each iteration as well as the mechanism for acceptance of solution are also very
important to obtain good results using an iterative local search algorithm. The
proposed algorithm is presented in Algorithm 1.

Algorithm 1. Iterative heuristic algorithm - IHA
Generate initial solution S1

while Number of Iterations < MAXIterations do
Get solution S2 from the execution of one of local search techniques proposed
in the next section. The local search technique uses the solution S1 as an initial
solution

if Solution S2 fulfils the acceptance criteria then
S1 = S2

end if

Apply perturbation in solution S1

end while

As an initial solution we use an order of nodes as they appear in the input.
Better initial solutions can also be constructed by using other heuristics which
run in polynomial time, such as Maximum Cardinality Search, min-fill heuristic,
etc. However, as the proposed method usually finds fast a solution produced by
these heuristics, our algorithm starts with very poor initial solution.

2.1 Local Search Techniques

We propose two local search methods for generation of a good solution which
will be used as an initial solution with some perturbation in the next call of the
same local search algorithm. Both techniques are based on the idea of moving
only those vertices in the ordering, which cause the largest clique during the
elimination process. The motivation for using this method is the reduction of
the number of solutions that should be evaluated. The first proposed technique
(LS1) is presented in Algorithm 2.

As we see above, the proposed algorithm applies a very simple heuristic. A
vertex is chosen randomly among the vertices that have the same number of
neighbourhood vertices as the largest clique obtained during the elimination
process. We experimented with two types of moves. In the first variant the vertex
is inserted in a random position in the elimination ordering, while in the second
variant the vertex is swapped with another vertex located in a randomly selected
position, i.e. the two chosen vertices change their position in the elimination
ordering. The heuristic will stop if the solution is not improved after a certain
number of iterations. Although this is a very simple heuristic, using it alone does

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Generation of Tree Decompositions by Iterative Local Search 135

Algorithm 2. Local Search Algorithm 1 - LS1 (InputSolution)
while NrNotImprovments < MAXNotImprovments do

Select a vertex in the elimination ordering which causes the largest clique (ties
are broken randomly if there are several vertices which cause the cliques with the
same size)

Swap this vertex with another vertex located in a randomly chosen position

end while

not produce good results for the tree decompositions. Whereas combination with
the iterative method (see Algorithm 1) it generates good results.

The second proposed heuristic (LS2) is presented in Algorithm 3. This tech-
nique is similar to algorithm LS1. However, in this technique in each iteration
we apply the same procedure as in the LS1 with some probability p, whereas
with probability 1 − p, the best solution is selected (ties are broken randomly)
from the neighbourhood of solution. The neighbourhood of a solution is obtained
by generation of all solutions which are obtained by swapping of selected vertex
with all its neighbour vertices in the graph.

Algorithm 3. Local Search Algorithm 2 - LS2 (InputSolution)
while NrNotImprovments < MAXNotImprovments do

With probability p:

Select a vertex in the elimination ordering which causes the largest clique (ties
are broken randomly)

Swap this vertex with another vertex located in the randomly chosen position

With probability 1 − p:
Select a vertex in the elimination ordering which causes the largest clique (ties
are broken randomly)

Generate neighbourhood of the solution by swapping the selected vertex with its
neighbours, i.e. all solutions are generated by swapping the selected vertex with
its neighbours

Select the best solution from the generated neighbourhood

end while

2.2 Perturbation

During the perturbation phase the solution obtained by local search procedure
is perturbed and the newly obtained solution is used as an initial solution for
the new call of the local search technique. The main idea is to avoid the random
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restart. Instead or random restart the solution is perturbed with a bigger move(s)
as those applied in the local search technique. This enables some diversification
that helps to escape from the local optimum, but avoids beginning from scratch
(as in case of random restart), which is very time consuming. We propose three
perturbation mechanisms for the solution:

– RandPert: N vertices are chosen randomly and they are moved into new
random positions in the ordering.

– MaxCliquePer: All nodes that produce the maximal clique in the elimination
ordering are inserted in a new randomly chosen positions in the ordering.

– DestroyPartPert: All nodes between two positions (selected randomly) in the
ordering are inserted in the new randomly chosen positions in the ordering.

Determining the number of nodes N that will be moved is complex and may
be dependent on the problem. To avoid this problem we propose an adaptive
perturbation mechanism that takes into consideration the feedback from the
search process. The number of nodes N varies from 2 to 10, and the algorithm
begins with small perturbation with N = 2. If during the iterative process (for a
determined number of iterations) the local search technique produces solutions
with same tree width for more than 20% of cases, the size of perturbation is
increased by 1, otherwise the size of N will be decreased by 1. This enables an
automatic change of perturbation size based on the repetition of solutions with
the same width. We applied each perturbation mechanism separately, and also
considered combination of two perturbations, so that one perturbation is applied
for the certain number and another perturbation is applied for the certain next
number of iterations.

2.3 Acceptance of Solution in Iterated Algorithm

Different techniques can be applied for acceptance of the solution obtained by
the local search technique. If the solution is accepted it will be perturbed and will
serve as an initial solution for the next call of one of the local search techniques.
We experimented with the following variants for acceptance of solution for the
next iteration (see Algorithm 1):

– Solution S2 is accepted only if it has a better width than the solution S1.
– Solution S2 is always accepted.
– Solution S2 is accepted if its treewidth is not larger than the treewidth of

the best yet found solution minus x, where x is an integer.

2.4 Setting of Parameters

Using our algorithm we experimented with two proposed local search techniques
for construction phase, different perturbation, different acceptance criteria, swap
neighbourhood, and different termination criteria for the local search procedures.
For algorithm LS2 we experimented with probability p = 10, 30, 50. Consider-
ing the acceptance of solution in iterated local search we experimented with
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three variants described in Section 2.3. For the third variant we experimented
with x = 2 and x = 3. We did experiments with three types of perturbations:
RandPert, MaxCliquePer, and DestroyPartPer. Additionally, we experimented
with combination of RandPert and MaxCliquePer. The current best results pre-
sented in this paper are obtained with the iterative heuristic algorithm (IHA) and
these parameters: LS1 algorithm (see Algorithm 2) is used in the construction
phase and this algorithm stops if the solution does not improve for 10 itera-
tions (MAXNotImprovments = 10). In the perturbation phase are used both
RandPert and MaxCliquePer perturbations. Initially RandPert with N = 2−10
is applied. Further the algorithm switches alternatively between two perturba-
tions RandPert and MaxCliquePer, when IHA runs for 100 iterations without
improvement of a solution. For accepting of solution in IHA the third variant is
used. The solution produced in construction phase is accepted if its width is not
more than the width of the best current solution plus 3.

3 Computational Results

In this section we report on computational results obtained with the current
implementation of methods described in this paper. The results for 62 DIMACS
vertex coloring instances are given. These instances have been used for testing
of several methods for tree decompositions proposed in the literature (see [9],
[3], and [6]). Our algorithms have been implemented in C++ and the current
experiments were performed with a Intel Pentium 4 CPU 3GHz, 1GB RAM.

We compare our results with the results reported in [9], [3], and [6]. The results
reported in [9] are obtained in Pentium 3.8GHz processor. Results reported in [3]
are obtained with Pentium 3 1GHz processor, and the results reported in [6] are
obtained with Pentium-4 2.4 Ghz, 2GB RAM machine. To our best knowledge
these papers present the best existing upper bounds for treewidth for these 62
instances.

In Table 1 the results for the treewidth for DIMACS graph coloring instances
are presented. First and second columns of the table present the instances and
the number of nodes and edges for each instance. In column KBH are shown
the best results obtained by algorithms in [9]. The TabuS column presents the
results reported in [3], while the column BB shows the results obtained with
the branch and bound algorithm proposed in [6]. The last two columns present
results obtained by our algorithm proposed in this paper. In our algorithm are
executed three runs for each instance. In column IHA-best is given the best
width obtained in three runs for each instance, and the column IHA-AVG gives
the average of treewidth over 3 runs.

In Table 2 for each instance is given the time (in seconds) needed to produce
the treewidth presented in Table 1 for all algorithms. The time results given in
[6] present the time in which the best solutions are found. The results given in [3]
present the time of the overall run of the algorithm in one instance (number of it-
erations is 20000 and the algorithm stops after 10000 non-improving solutions). For
our algorithm are given the time results for finding of best solutions
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Table 1. Algorithms comparison regarding treewidth for DIMACS graph coloring
instances

Instance |V |/|E| KBH TabuS BB IHA-best IHA-AVG
anna 138 / 986 12 12 12 12 12
david 87 / 812 13 13 13 13 13
huck 74 / 602 10 10 10 10 10

homer 561 / 3258 31 31 31 31 31
jean 80 / 508 9 9 9 9 9

games120 120 / 638 37 33 - 32 32
queen5 5 25 / 160 18 18 18 18 18
queen6 6 36 / 290 26 25 25 25 25
queen7 7 49 / 476 35 35 35 35 35
queen8 8 64 / 728 46 46 46 45 45.3
queen9 9 81 / 1056 59 58 59 58 58

queen10 10 100 / 1470 73 72 72 72 73
queen11 11 121 / 1980 89 88 89 88 88.7
queen12 12 144 / 2596 106 104 110 105 106.3
queen13 13 169 / 3328 125 122 125 123 124
queen14 14 196 / 4186 145 141 143 141 142.7
queen15 15 225 / 5180 167 163 167 164 166.3
queen16 16 256 / 6320 191 186 205 186 187.7
fpsol2.i.1 269 / 11654 66 66 66 66 66
fpsol2.i.2 363 / 8691 31 31 31 31 31
fpsol2.i.3 363 / 8688 31 31 31 31 31
inithx.i.1 519 / 18707 56 56 56 56 56
inithx.i.2 558 / 13979 35 35 31 35 35
inithx.i.3 559 / 13969 35 35 31 35 35.3
miles1000 128 / 3216 49 49 49 49 49
miles1500 128 / 5198 77 77 77 77 77
miles250 125 / 387 9 9 9 9 9
miles500 128 / 1170 22 22 22 23 24.3
miles750 128 / 2113 37 36 37 36 37
mulsol.i.1 138 / 3925 50 50 50 50 50
mulsol.i.2 173 / 3885 32 32 32 32 32
mulsol.i.3 174 / 3916 32 32 32 32 32
mulsol.i.4 175 / 3946 32 32 32 32 32
mulsol.i.5 176 / 3973 31 31 31 31 31
myciel3 11 / 20 5 5 5 5 5
myciel4 23 / 71 11 10 10 10 10
myciel5 47 / 236 20 19 19 19 19
myciel6 95 / 755 35 35 35 35 35.7
myciel7 191 / 2360 74 66 54 66 67.7
school1 385 / 19095 244 188 - 184 203.3

school1 nsh 352 / 14612 192 162 - 155 158.7
zeroin.i.1 126 / 4100 50 50 - 50 50
zeroin.i.2 157 / 3541 33 32 - 32 32.3
zeroin.i.3 157 / 3540 33 32 - 32 32.7
le450 5a 450 / 5714 310 256 307 253 254.7
le450 5b 450 / 5734 313 254 309 248 250
le450 5c 450 / 9803 340 272 315 272 274
le450 5d 450 / 9757 326 278 303 267 271.3
le450 15a 450 / 8168 296 272 - 264 267.7
le450 15b 450 / 8169 296 270 289 271 273.7
le450 15c 450 / 16680 376 359 372 357 359.7
le450 15d 450 / 16750 375 360 371 354 356
le450 25a 450 / 8260 255 234 255 221 227.7
le450 25b 450 / 8263 251 233 251 228 229
le450 25c 450 / 17343 355 327 349 327 328.7
le450 25d 450 / 17425 356 336 349 330 333.7
dsjc125.1 125 / 736 67 65 64 60 60.7
dsjc125.5 125 / 3891 110 109 109 108 108.3
dsjc125.9 125 / 6961 119 119 119 119 119
dsjc250.1 250 / 3218 179 173 176 169 170.3
dsjc250.5 250 / 15668 233 232 231 230 230.3
dsjc250.9 250 / 27897 243 243 243 243 243
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Table 2. Algorithms comparison regarding time needed for generation of tree decom-
positions

Instance |V |/|E| KBH TabuS BB IHA-best(AVG) IHA-total(AVG)
anna 138 / 986 1.24 2776.93 1.64 0.1 11.0
david 87 / 812 0.56 796.81 77.6538 0.1 11.0
huck 74 / 602 0.24 488.76 0.041 0.1 11.0

homer 561 / 3258 556.82 157716.56 10800 105.7 206.7
jean 80 / 508 0.29 513.76 0.05 0.1 11.0

games120 120 / 638 5.2 2372.71 - 123.3 224.3
queen5 5 25 / 160 0.04 100.36 5.409 0.1 11.0
queen6 6 36 / 290 0.16 225.55 81.32 0.1 11.0
queen7 7 49 / 476 0.51 322.4 543.3 0.1 11.0
queen8 8 64 / 728 1.49 617.57 10800 17.7 118.7
queen9 9 81 / 1056 3.91 1527.13 10800 1.0 102.0

queen10 10 100 / 1470 9.97 3532.78 10800 5.3 106.3
queen11 11 121 / 1980 23.36 5395.74 10800 11.0 112.0
queen12 12 144 / 2596 49.93 10345.14 10800 18.3 119.3
queen13 13 169 / 3328 107.62 16769.58 10800 30.7 131.7
queen14 14 196 / 4186 215.36 29479.91 10800 834.9 3835.0
queen15 15 225 / 5180 416.25 47856.25 10800 249.3 3250.0
queen16 16 256 / 6320 773.09 73373.12 10800 182.2 3183.0
fpsol2.i.1 269 / 11654 319.34 63050.58 0.587076 6.7 17.7
fpsol2.i.2 363 / 8691 8068.88 78770.05 0.510367 11.0 22.0
fpsol2.i.3 363 / 8688 8131.78 79132.7 0.492061 6.7 17.7
inithx.i.1 519 / 18707 37455.1 101007.52 26.3043 10.7 21.7
inithx.i.2 558 / 13979 37437.2 121353.69 0.05661 12.7 23.7
inithx.i.3 559 / 13969 36566.8 119080.85 0.02734 10.7 21.7
miles1000 128 / 3216 14.39 5696.73 10800 29.3 130.3
miles1500 128 / 5198 29.12 6290.44 6.759 1.0 12.0
miles250 125 / 387 10.62 1898.29 1.788 5.7 16.7
miles500 128 / 1170 4.37 4659.31 1704.62 771.8 3772.0
miles750 128 / 2113 8.13 3585.68 10800 9.7 110.7
mulsol.i.1 138 / 3925 240.24 3226.77 1.407 0.1 11.0
mulsol.i.2 173 / 3885 508.71 12310.37 3.583 0.3 11.3
mulsol.i.3 174 / 3916 527.89 9201.45 3.541 0.7 11.7
mulsol.i.4 175 / 3946 535.72 8040.28 3.622 1.0 12.0
mulsol.i.5 176 / 3973 549.55 13014.81 3.651 1.0 12.0
myciel3 11 / 20 0 72.5 0.059279 0.1 11.0
myciel4 23 / 71 0.02 84.31 0.205 0.1 11.0
myciel5 47 / 236 2 211.73 112.12 0.1 11.0
myciel6 95 / 755 29.83 1992.42 10800 0.3 11.3
myciel7 191 / 2360 634.32 19924.58 10800 11.0 22.0
school1 385 / 19095 41141.1 137966.73 - 2105.4 4794.2

school1 nsh 352 / 14612 2059.52 180300.1 - 3006.3 4885.8
zeroin.i.1 126 / 4100 17.78 2595.92 - 0.1 11.0
zeroin.i.2 157 / 3541 448.74 4825.51 - 42.7 143.7
zeroin.i.3 157 / 3540 437.06 8898.8 - 3.3 104.3
le450 5a 450 / 5714 7836.99 130096.77 10800 2336.3 4789.3
le450 5b 450 / 5734 7909.11 187405.33 10800 3641.7 5001.0
le450 5c 450 / 9803 103637.17 182102.37 10800 1057.3 3947.0
le450 5d 450 / 9757 96227.4 182275.69 10800 735.3 3736.3
le450 15a 450 / 8168 6887.15 117042.59 - 3235.0 4942.0
le450 15b 450 / 8169 6886.84 197527.14 10800 4073.0 5001.0
le450 15c 450 / 16680 122069 143451.73 10800 2446.3 4599.7
le450 15d 450 / 16750 127602 117990.3 10800 3359.3 5001.0
le450 25a 450 / 8260 4478.3 143963.41 10800 2629.7 4739.3
le450 25b 450 / 8263 4869.97 184165.21 10800 3039.3 4555.3
le450 25c 450 / 17343 10998.68 151719.58 10800 3737.3 5001.0
le450 25d 450 / 17425 11376.02 189175.4 10800 2911.0 5001.0
dsjc125.1 125 / 736 171.54 1532.93 10800 696.7 3697.7
dsjc125.5 125 / 3891 38.07 2509.97 10800 1.3 12.3
dsjc125.9 125 / 6961 55.6 1623.44 260.879 0.1 11.0
dsjc250.1 250 / 3218 5507.86 28606.12 10800 1554.3 4115.7
dsjc250.5 250 / 15668 1111.66 14743.35 10800 351.7 3352.7
dsjc250.9 250 / 27897 1414.58 30167.7 10800 0.3 11.3
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(IHA-best(AVG)) and the time of the overall run of algorithm (IHA-total (AVG))
in each instance (AVG indicates that the average over three runs is taken). IHA
algorithm stops for easy instances after 10 seconds of non improvement of solution,
for middle instances after 100 seconds, and for harder instances after 3000 seconds
of non improvement of solution. The maximal running time of algorithm for each
instance is set to be 5000 seconds.

Based on the results given in Tables 1 and 2 we conclude that our al-
gorithm gives better results for 35 instances compared to [9] for the upper
bound of treewidth, whereas algorithm in [9] gives better results than our al-
gorithm for 1 problem. Compared to the algorithm proposed in [3] our ap-
proach gives better upper bounds for 17 instances, whereas algorithm in [3]
gives better upper bounds for 5 instances. Further, compared to branch and
bound algorithm proposed in [6] our algorithm gives better upper bounds for
treewidth for 24 instances, whereas the branch and bound algorithm gives bet-
ter results compared to our algorithm for 4 instances. Considering the time,
a direct comparison of algorithms can not be done, as the algorithms are ex-
ecuted in computers with different processors and memory. However, as we
can see based on the results in Table 2 our algorithm gives good time per-
formance and for some instances it decreases significantly the time needed for
generation of tree decompositions. Based on our experiments the efficiency of
our algorithm is due to applying of LS1 algorithm in the construction phase of
IHA. In LS1 only one solution is evaluated during each iteration. When using
LS2 the number of solutions to be evaluated during most of iterations is much
larger.

4 Conclusions

In this paper, we proposed a new heuristic algorithm for finding an upper
bound of tree decompositions for a given undirected graph. The proposed al-
gorithm has been applied in different DIMACS vertex coloring instances. The
results show that our algorithm achieves very good results for the upper bound
of treewidth for different instances. In particular the algorithm improves the
best existing treewidth upper bounds for 17 instances, and it has a good time
performance.

For the future work we are considering further improvement of proposed al-
gorithm by automatic adaptation of different parameters such as the acceptance
criteria, perturbation mechanism, and other parameters in the local search pro-
cedure. Additionally we plan to extend the existing algorithm for generation of
hypertree decompositions.

Acknowledgments. This paper was supported by the Austrian Science Fund
(FWF) project: Nr. P17222-N04, Complementary Approaches to Constraint
Satisfaction.
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Abstract. We propose an evolutionary algorithm (EA) that applies to
the capacitated vehicle routing problem (CVRP). The EA uses edge
assembly crossover (EAX) which was originally designed for the traveling
salesman problem (TSP). EAX can be straightforwardly extended to the
CVRP if the constraint of the vehicle capacity is not considered. To
address the constraint violation, the penalty function method with 2-opt
and Interchange neighborhoods is incorporated into the EA. Moreover,
a local search is also incorporated into the EA. The experimental results
demonstrate that the proposed EA can effectively find the best-known
solutions on Christofides benchmark. Moreover, our EA found ten new
best solutions for Golden instances in a reasonable computation time.

1 Introduction

The Vehicle Routing Problem (VRP) is a practical problem that has been widely
studied in the OR community. Let G = (V, E) be a complete undirected graph
with a set of n + 1 vertices V = {v0, v1, . . . , vn} and a set of edges E. v0 is a
depot and vi (i ∈ {1, . . . , n}) represent n customers, each having non-negative
demand qi. Each edge (vi, vj) has non-negative distance cij . The VRP is to find
a set of m routes of minimum total distance, such that each route starts and
ends at the depot, each customer is visited exactly once, the total demand of
any route does not exceed Q (vehicle capacity constraint). Note that m is also
a decision variable. The definition described here is the most basic type of the
VRP, that is called the capacitated VRP (CVRP). There are several variants of
the VRP with additional constraints. In this paper, we focus on the CVRP.

Due to its theoretical and practical interest, the VRP has received a great
amount of attentions since its proposal in the 1950’s. In recent years, great
success in finding near-optimal solutions has been achieved via meta-heuristics
including deterministic annealing [1], tabu search [2][3][4], evolution strategy [5]
and population based search [6][7], etc. These results are reviewed in [8].

The traveling salesman problem (TSP) is known to be a special case of the
CVRP where the vehicle capacity Q is infinity. In despite of the similarity of
the definitions between the TSP and the CVRP, difficulties of these problems
are quite different. For example, exact algorithms can only solve relatively small

C. Cotta and J. van Hemert (Eds.): EvoCOP 2007, LNCS 4446, pp. 142–153, 2007.
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CVRP instances (n < 100) while some of non-trivial relatively large TSP in-
stances (n < 30, 000) can be solved [9]. Before now, many heuristic methods
have been applied to the TSP and these techniques are sometimes useful for
solving the VRP. One powerful operator (crossover) developed in population
based searches for the TSP is edge assembly crossover (EAX) [10]. In recent
study [11][12], evolutionary algorithms (EAs) using EAX could find several op-
timal solutions up to 24,000 nodes within a day.

In this paper, an evolutionary algorithm using EAX is applied to the CVRP.
And we demonstrate that EAX has a great potential for solving the CVRP. EAX
can be straightforwardly extended to the CVRP. However, EAX generates chil-
dren without respect to the vehicle capacity constraints, that results in producing
infeasible solutions. Such solutions are modified by local improvements based on
a penalty function that penalize the overhead of the vehicle capacity. Well-known
2-opt and Interchange neighborhoods [13] are used in a modification procedure.
Moreover, a local search is also incorporated into the EA because local searchs are
almost mandatory to achieve high quality solutions for the VRP [7].

The remainder of this paper is organized as follows. In Section 2, we briefly
introduce EAX designed for the TSP. And then we propose EAX designed for
the CVRP in Section 3. An EA including EAX as a crossover operator and
incorporated techniques such as a modification procedure and a local search are
described in Section 4. In Section 5, computational results are presented. Finally,
we present our conclusions in Section 6.

2 EAX for the TSP

In this section, we briefly look at EAX crossover designed for the TSP [10] with-
out introducing the EA. Fig. 1 illustrates a rough outline of EAX designed for
the TSP. EAX generates new tours (children) by combining two tours (parents)
in a population. EAX consists of two phases.

In the first phase, intermediate solutions are constructed by assembling edges
from parents under a relaxed condition of the TSP. In this relaxation, the con-
straint imposed on intermediate solutions is that δC(v) = 2 (v ∈ V ) where δC(v)
denotes the number of edges incident to a vertex v in an intermediate solution C.
Therefore, each intermediate solution generally consists of several sub-tours. In
the second phase, each intermediate solution is modified into a feasible solution
(tour) by merging sub-tours. In this modification, any two sub-tours are merged
by deleting one edge from each of the two sub-tour and adding the edges to
connect them. Which sub-tours are connected and which edges are deleted are
determined so as to minimize a resulting tour length.

EAX has two advantages; (i) a wide variety of children can be generated from a
pair of parents because intermediate solutions are constructed under the relaxed
condition of the TSP, and (ii) children can be constructed without introducing
long edges. So, we can intuitively expect that EAX work well for solving the TSP.
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Parents

phase I

Intermediate feasible solution

phase II

Fig. 1. EAX crossover for the TSP

3 EAX for the CVRP

In this section, we propose EAX designed for the CVRP. A basic algorithm is
almost the same as that for the TSP [11][12].

3.1 Algorithm of EAX

EAX designed for the TSP can be straightforwardly extended to the CVRP when
the vehicle capacity constraint is neglected. Algorithm 1 and Fig. 2 illustrate an
algorithm of EAX designed for the CVRP. EAX finally generates intermediate
solutions (II) from parents (indi-A and indi-B). For the sake of simplicity, let
indi-A and indi-B have the same number of routes, that is denoted by m. And let
all customer demands qi be 1, meaning that each feasible route cannot includes
more than Q customers. In the example illustrated in Fig. 2, m = 3 and Q = 15.

EAX designed for the CVRP also consist of two phases as is the case of
the TSP. In the first phase (step (1) – step (4)), intermediate solutions (I) are
constructed by assembling edges from parents under a relaxed condition of the
CVRP. In this relaxation, the constraint imposed on intermediate solutions (I)
is that δC(v0) = 2m and δC(v) = 2 (v ∈ V \{v0}). Therefore, each intermediate
solution (I) consists of m routes (cycles including the depot), and sub-tours
(cycles not including the depot). In the second phase (step 5), sub-tours are
merged into routes without introducing long edges.

However, resulting intermediate solutions (II) generally violate the vehicle ca-
pacity constraint. In this example, (a”) and (b”) are infeasible solutions, each
including infeasible routes of the total demands of 22 and 17, respectively. There-
fore, such infeasible solutions must be modified into feasible solutions. A modi-
fication procedure is not included in the procedure of EAX and this procedure
is described in 4.2.

Before describing an algorithm of EAX, some notations are defined. EA and
EB are defined as sets of edges included in indi-A and indi-B, respectively.
GAB = (V, EA ∪ EB\(EA ∩ EB)). AB-cycle is defined as a cycle on GAB such
that indi-A’s edges and indi-B’s edges are linked alternately. E-set is defined as
any combination of AB-cycles. Although GAB can be defined as (V, EA ∪ EB),
the former definition is employed in this paper.
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EA: indi-A EB: indi-B GAB

E-sets

Step 1

AB-cycles

Step 2

Step 3

Step 4

Step 5

(Step 6)

Intermediate solutions (I)

Intermediate solutions (II)

(a') (d')(c')(b')
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(a'') and (b'') are modified into feasible solutions.
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5

Fig. 2. Basic steps of EAX for the VRP
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Algorithm 1. Basic steps of EAX
Step 1 Construct GAB from indi-A and indi-B.
Step 2 Divide all edges on GAB into AB-cycles. AB-cycles can be easily found

by randomly tracing indi-A’s edges and indi-B’s edges alternately on GAB

and deleting AB-cycles found from GAB.
Step 3 Construct E-sets by selecting AB-cycles according to a given rule.
Step 4 Generate intermediate solutions (I) by applying E-sets to indi-A, i.e.,

each is generated form indi-A by removing indi-A’s edges in an E-set and
adding indi-B’s edges in an E-set.

Step 5 Sub-tours are merged into routes in each intermediate solution (I). The
detail is described in Algorithm 2.

(Step 6) Eliminate the violation of the vehicle capacity constraint included in
intermediate solutions (II). The detail is described in 4.2.

A minor variation from EAX designed for the TSP is that δA
G(v0) (δB

G(v0))
can be larger than 2 where δA

G(v) (δB
G(v)) is the number of indi-A’s (indi-B’s)

edges incident to v on GAB. Note that δA
G(v0) = 1 in the example illustrated

in Fig 2 because EA ∩ EB is removed from GAB. The following properties are
satisfied.

– The union of all AB-cycles generated in Step 2 is identical to GAB if δA
G(v) =

δB
G(v) (v ∈ V ). This condition is satisfied if indi-A and indi-B have the same

number of routes.
– δA

E(v) = δB
E (v) (v ∈ V ) where δA

E(v) (δB
E (v)) is the number of indi-A’s (indi-

B’s) edges incident to v in an E-set.
– δC(v) = δA(v) (v ∈ V ) where δA(v) (δC(v)) is the number of edges incident

to v in indi-A (an intermediate solution (I) C). Therefore, each intermediate
solution (I) consists of m routes and sub-tours.

– If GAB is defined as (V, EA ∪ EB\(EA ∩ EB)), common edges between the
parents are inevitably included in intermediate solutions (I).

Algorithm 2 describes a detail of Step 5 where sub-tours can be merged into
routes without introducing long edges in an intermediate solution (I).

Algorithm 2. Merging sub-tour (Step 5)

(5-1) Let Ui (i = 1, . . . , k) be sets of edges, each forming a route or sub-tour
in an intermediate solution (I) where k is the sum of the number of routes
and the number of sub-tours.

(5-2) Randomly select a sub-tour from an intermediate solution (I). Let Ur be
a selected sub-tour.

(5-3) Find a pair of edges, e ∈ Ur and e′ ∈ Uj (j �= r) that minimizes {−w(e)−
w(e′) + w(e′′) + w(e′′′)} where e′′ and e′′′ are determined to connect the
breakpoints. w(e) is a length of a edge e. Let Us be a route or sub-tour that
includes edge e′. Ur and Us are merged by Ur := (Ur∪Us−{e, e′})∪{e′′, e′′′},
and empty Us.

(5-4) If there is no sub-tour, then terminate, else go to (5-2).
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3.2 Methods of Constructing E-Sets

In Step 3, E-sets can be constructed of any combination of AB-cycles and various
intermediate solutions can be generated depending on E-sets. One simple method
for constructing E-sets is selecting AB-cycles randomly, that is called EAX-Rand.
Although EAX-Rand can generate a wide variety of children, the following two
methods for selecting AB-cycles are known to be better than EAX-Rand in the
studies of the TSP [11][12].

EAX-1AB: An E-set is constructed of a single AB-cycle. For example, E-sets
(a) and (b) can be constructed (See Fig. 2).

EAX-Block: First, randomly select a single AB-cycle. Let it be a center AB-
cycle. In addition, select AB-cycles incident to the center AB-cycle. For ex-
ample, E-set (c) can be constructed where AB-cycle 2 is selected as a center
AB-cycle (See Fig. 2).

Intermediate solutions (I) generated by EAX-1AB tends to be similar to indi-
A because these are formed from indi-A by removing a relatively small number of
indi-A’s edges and adding the same number of indi-B’s edges. On the other hand,
EAX-Block can generate intermediate solutions (I) by assembling a block (a set
of relatively large number of geographically close edges) of indi-A’s edges and a
block of indi-B’s edges. EAX-1AB should be used in an initial stage of an EA
because relatively localized moves can effectively improve solution candidates in
this stage. EAX-Block should be used after EAX-1AB can no longer improve
solution candidates because these solutions get stuck in deep local optima.

4 EA for Solving the CVRP

In this section, an EA for solving the CVRP is presented. First, we describe a
skeleton of the proposed EA that includes EAX as a crossover operator. Next,
sub-functions used in the proposed EA are described.

4.1 Main Procedure

Procedure EA is a pseudo-code of the proposed EA. An initial population is
generated by Creat Initial Solution() (line 2). For each pair of parents (denoted
by pA and pB) (line 7), Nch children are generated (line 9 – 14) and the child
having the shortest total distance replaces the individual in the population se-
lected as pA if it is better than pA (line 8,13,15). This replacement is suitable
to maintain the population diversity because children generated by EAX-1AB
tends to be similar to pA. If children generated by EAX violate the vehicle ca-
pacity constraint, the violation is eliminated by a modification procedure (line
11). Moreover, feasible solutions are locally optimized by a local search (line
12). When using EAX (line 10), two types of EAX described in 3.2 are used.
Initially, EAX-1AB is used until the best solution in the population stagnates
over 20 generations. After that, EAX-Block is used until the best solution in the
population stagnates over 50 generations. Then, terminate a run (line 17).
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Procedure EA(Npop, Nch )
begin
1 :for i := 1 to Npop do
2 : indii := Creat Initial Solution();
3 :end for
4 :repeat
5 : indexes i ∈ {1, . . . , Npop} are randomly assigned to the population;
6 : for i := 1 to Npop do
7 : pA := indii; pB := indii+1;
8 : cbest := pA;
9 : for j := 1 to Nch do
10: c := EAX(pA, pB); // EAX-1AB or EAX-Block
11: c := Modification(c);
12: c := Local Search(c);
13: if c.distance < cbest.distance then cbest := c;
14: end for
15: indii := cbest;
16: end for
17:until termination condition is satisfied;
18:return best individual in the population;
end

4.2 Sub-functions

Local Search. We use the following two neighborhoods that are known to be
suitable for the VRP [13]. 2-Opt neighborhood is defined as a set of all possible
solution candidates that are obtained from a current solution by deleting two
edges and adding new two edges to connect the breakpoints in other possible
ways. Interchange neighborhood is defined as a set of all possible solution candi-
dates obtained from a current solution by interchanging two segments between
different routes in other possible way. Fig. 3 illustrates several cases.

Fig. 3. Neighborhoods for the VRP. Points represent successive customers on routes.
Gray and dotted edges mean removed and added edges, respectively. (a), (b) and (c)
are examples of 2-opt. (d), (e) and (f) are examples of Interchange.

Functions 2-Opt(c) and Interchange(c, λ, μ) are defined as the local searches
that return local optima using 2-Opt and Interchange (λ and μ mean the number
of vertices of the swapped segments) neighborhoods, respectively. These local
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searches are executed with the first improvement. Procedure Local Search(c) is
a pseudo-code of the local search used in the proposed EA.

Procedure Local Search(c)
begin
1: c := 2-Opt(c);
2: c := Interchange(c, 0, 1);
3: c := Interchange(c, 1, 1);
4: return c;
end

Modification. Procedure Modification(c) modifies infeasible solution candi-
dates that violate the vehicle capacity constraint. In the modification process,
the penalty function method is used. In the studies of the CVRP, the following
penalty function is simple and is frequently used [7] where FV RP (c) is the total
distance of routes, and overcap(c) is the overhead of the capacity (the sum of
the excess of demand on routes) in a solution candidate c.

Fpenalty(c) = FVRP(c) + α · overcap(c)

In the procedure, a route r violating the constraint is randomly selected (line
2). And then, the best solution candidate (evaluated by the penalty function)
in restricted 2-Opt and Interchange neighborhoods are searched (line 3– 5). For
example, function 2-Opt BestImp(c, r) returns the best solution candidate in the
restricted 2-Opt neighborhood of a solution candidate c where one deleting edge
must be included in the route r. Function Interchange BestImp(c, λ, 0, r) is also
defined in a similar fashion where a segment of length λ must be included in the
route r. These processes are repeated until a feasible solution is obtained.

In addition, neighboring solutions that does not decrease overcap(c) are ne-
glected in the modification process so that feasible solutions can be obtained
robustly. The parameter α should be determined appropriately. A method of
determining α is described next.

Procedure Modification(c)
// Penalty function is used in this process.
Let Qr (r = 1, . . . , m) be the sum of demand on a route r.
begin
1: repeat
2: Randomly select r ∈ {1, . . . , m} such that Qr > Q;
3: c1 := 2-Opt BestImp(c, r);
4: c2 := Interchange BestImp(c, r, 1, 0);
5: c3 := Interchange BestImp(c, r, 2, 0);
6: c := Select Best Evaluated(c1, c2, c3);
7: until Qr ≤ Q (r = 1, . . . , m);
8: return c;
end
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Preprocessing. Procedure Creat Initial Solution() generates feasible solutions.
In this process, function Initial Solution() (line 1) produces identical feasible
solutions, each defined by {v0, vi, v0} (i ∈ V \{v0}). During the local search using
the penalty function (line 2), routes in a temporal solution can be merged due to
the special cases of 2-Opt and Interchange neighborhoods. The number of routes
in each solution candidate generated by this process (line 2) tend to be small
with decreasing the parameter α (If α is 0, the optimum is a tour). If solution
candidates generated by this process (line 2) are infeasible, such solutions are
modified by the modification process (line 3) described above. Moreover, feasible
solutions are locally optimized (line 4).

The parameter α is determined so that Procedure Creat Initial Solution() can
steady generate relatively better solution candidates. Let m be the number of
routes of the relatively better solutions. We employed only solution candidates
consisting of m routes as the initial population.

Procedure Creat Initial Solution()
begin
1: c := Initial Solution();
2: c := Local Search(c); // Penalty function is used.
3: c := Modification(c);
4: c := Local Search(c); // Normal evaluation is used.
5: return c;
end

5 Experimental Results

In this section, we describe experimental results of the proposed EA. And then,
the results are compared with other heuristic methods that are known to be
current best heuristics on the CVRP.

The proposed EA is applied to well-known CVRP benchmarks. Christofides
benchmark [14] consisting of 14 instances (50 ≤ n ≤ 199) was proposed in 1979.
Golden benchmark [1] consisting of relatively large 20 instances (200 ≤ n ≤ 480)
was proposed in 1998. In Table 1, Christofides and Golden instances are de-
noted by C# and G#, respectively. Customers in C1–C5 are randomly distributed,
whereas customers in C11 and 12 are clustered together. Customers in G9–G20
are arranged in distinct geometric shapes. We excluded C6–C10 and G1–G8 from
our experiments because an additional constraint called total duration constraint
is imposed on these instances and there is not enough room to address these in-
stances.

The proposed EA is implemented in C++ and executed on Xeon 3.2 GHz
single processor with a parameter setting: Npop = 100, Nch = 30. Ten runs were
executed for each instance.

Table 1 lists the results of the proposed EA. The column headings are as
follows: “Best” and “Average” mean the best and the averaged solution val-
ues, respectively, “#Better” means the number of trials that found best-known

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Edge Assembly Crossover for the Capacitated Vehicle Routing Problem 151

Table 1. Computational results of the proposed EA (Ten runs)

  C1        50

  C2        75

  C3      199

  C4      150

  C5      199

C11      120

C12      100

           524.61       10          524.61         0.00       

           835.26       10          835.26         0.00       

           826.14       10          826.14         0.00      

         1028.42         9        1028.51         0.01       

         1291.29         2        1293.93         0.20   

         1042.11       10        1042.11         0.00       

           819.56       10          819.56         0.00       

  G9      255

G10      323

G11      399

G12      483

G13      252

G14      320

G15      396

G16      480

G17      240

G18      300

G19      360

G20      420

  580.60*     10          582.34        -0.18       

  738.92*       8          740.91        -0.15      

  917.17*       6          918.19        -0.03  

1108.48         0         1110.71         0.32   

  857.19*       7          858.84        -0.03  

1080.55*       8        1080.93        -0.04    

1340.24*       8        1344.02        -0.09    

2171.30         0        2178.78       34.27 

  707.76*     10          707.77        -0.00     

  995.39*     10          996.62        -0.21     

1366.14*       3        1367.31         0.03    

1820.54*       1        1822.97         0.10       

Instances  n Best    #Better    Average      Err.     Seconds(1)

  524.61

  835.26

  826.14

1028.42

1291.29

1042.11

  819.56

  583.39

  742.03

  918.45

1107.19

  859.11

1081.31

1345.23

1622.69

  707.79

  998.73

1366.86

1821.15

     12

     63

     31

   136

   720

     30

       5

1552

2508

3835

6801

1165

1620

1924

3219

  718

1261

2013

3169

Proposed EA

(1) Xeon 3.2 GHz

  0.3

  0.5

  0.5

  0.5

  0.3

  0.8

  0.5

 0.05

 0.05

 0.1

 0.07

 0.04

 0.05

 0.05

 0.3

 0.2

 0.2

 0.3

 0.3

Pre. Best

or new best solutions, “Err.” means the averaged percentage excess from the
best-known solution values, ”Seconds” means the averaged CPU time in sec-
onds required for a single run, “Pre Best” means the best-known solution values
[8][15]. In the column “Best”, solution values are in boldface if these values are
equal or better than the best-known values, and “*” means new best solutions.

Table 2 lists the results of recent CVRP heuristics reported in the review
paper for the CVRP [8]. Three heuristics demonstrating relatively better results
are listed. AGES [5] is known to be the current best meta-heuristic for the CVRP
(and the VRP with time window). Prins’s method [6] is frequently referred as
a good memetic algorithm for the CVRP. GTS [2] is a kind of tabu search
algorithm. These results correspond to a single run unlike in the case of our
experiments. In this table, “Value” means the solution value obtained by a single
run, “Minutes” means the CPU time in minutes required for a single run (Note
that “Seconds” is used in Table 1). “Pre Best” means the best-known solution
values where these values for the Golden instances were obtained by AGES itself.

As shown in Table 1, the proposed EA can find the best-known solutions in
all Christofides instances employed in our experiments. Indeed, the proposed
EA can easily find the best-known solutions except for C5 instance even if the
parameters Npop and Nch are set to be 50 and 10, respectively. On the other
hand, C5 is a hard problem because other heuristics except for AGES could not
find the best-known solution and AGES need a long time to find it. Although
the proposed EA found the best-known solution only two times over ten trials,
the CPU time for a single run is smaller than that of AGES.
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Table 2. Computational results of other heuristics for the VRP (A single run)

Pre. Best

  583.39    0.00       8.33

  742.03    0.00       6.00

  918.45    0.00   110.00

1107.19    0.00   600.00

  859.11    0.00     10.25

1081.31    0.00       1.22

1345.23    0.00       7.17

1622.69    0.00     20.00

  707.79    0.00       0.75

  998.73    0.00       2.50

1366.86    0.00       6.00

1821.15    0.00       8.40

  591.54    1.40     14.32

  751.41    1.26     36.58

  933.04    1.59     78.50

1133.79    2.40     30.87

  875.16    1.87     15.30

1086.24    0.46     34.07

1367.37    1.65   110.48

1650.94    1.74   130.97

  710.42    0.37       5.86

1014.80    1.61     39.33

1376.49    0.70     74.25

1846.55    1.39   210.42

  593.35    1.71     11.67

  751.66    1.30     15.83

  936.04    1.92     33.12

1147.14    3.61     42.90

  868.80    1.13     11.43

1096.18    1.38     14.51

1369.44    1.80     18.45

1652.32    1.83     23.07

  711.07    0.46     14.29

1016.83    1.81     21.45

1400.96    2.49     30.06

1915.83    5.20     43.05

  524.61    0.00       0.81

  838.60    0.40       2.21

  828.56    0.29       2.39

1033.21    0.47       4.51

1318.25    2.09       7.50

1042.87    0.07       3.18

  819.56    0.00       1.10 

  524.61    0.00       0.01

  835.26    0.00       0.77

  826.14    0.00       0.46

1031.63    0.31       5.50

1300.23    0.69     19.10

1042.11    0.00       0.30

  819.56    0.00       0.05

          GTS

Toth and Vigo  (2003)
    Prins(2004)   

 524.61    0.00       0.01

 835.26    0.00       0.26

 826.14    0.00       0.05

1028.42   0.00       0.47

1291.29   0.00   101.93

1042.11   0.00       0.05

 819.56    0.00       0.63

         AGES best

Mester and Braysy (2004)

  C1        50

  C2        75

  C3      199

  C4      150

  C5      199

C11      120

C12      100

  G9      255

G10      323

G11      399

G12      483

G13      252

G14      320

G15      396

G16      480

G17      240

G18      300

G19      360

G20      420

Instances  n 

  524.61

  835.26

  826.14

1028.42

1291.29

1042.11

  819.56

  583.39

  742.03

  918.45

1107.19

  859.11

1081.31

1345.23

1622.69

  707.79

  998.73

1366.86

1821.15

Value     Err.  Minutes(2) Value    Err.  Minutes(4)Value   Err.  Minutes(3)

(2) Pentium 200MHz,  (3) Pentium III 1GHz,  (4) Pentium IV 2GHz

Surprisingly, the proposed EA found new best solutions for ten Golden in-
stances except for G12 and G16 1. Moreover, the numbers of trials that found
the best-known or new best solutions are larger than six in eight instances.
Although the CPU times of AGES tend to be smaller than those of the pro-
posed EA, no date is available when more CPU times are allowed in AGES. The
number of routes of the new best solutions are equal to those of the previous
best-known solutions, respectively. Various new best solutions were obtained in
each instances.

Additionally the proposed EA found a new best solution of total distance of
24396.38 for well-known tai385 (n = 385) instance included in Taillard bench-
mark [15]. The previous best-known solution of length 24431.44 had not been
improved since 1995.

6 Conclusion and Future Work

In this paper, we proposed the EA that is applied to the CVRP. The main idea is
applying EAX crossover to the CVRP. EAX can be straightforwardly extended to
the CVRP if the vehicle capacity constraint is not considered. Infeasible solutions
generated by EAX are modified by the modification procedure consisting of the
penalty function method with 2-opt and Interchange neighborhoods.

1 The solution values for instance G16 is significantly worse. In my opinion, the highly
clustered customers arrangement in this instance is related to this result.
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We demonstrated that the proposed EA could find ten new best solutions on
well-known Golden et al. benchmark for the CVRP (Table 1). In my opinion,
EAX has the following features in solving the CVRP; (i) intermediate solutions
(II) (infeasible solutions) can be constructed of short edges, and (ii) intermediate
solutions (II) can be modified into feasible solutions by relatively local moves
even though the overheads of the capacity are large (Note that such infeasible
solutions may be neglected when using usual penalty function methods).

We believe that EAX has a great potential for developments of the studies of
the VRP including more complex constraints such as the VRP with time window
(VRPTW). However, the proposed EAX can not work well on the VRPTW
because EAX does not consider the order of customers in routes. We are now
extended the proposed EAX to the VRPTW.
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Abstract. This paper presents a novel hybrid approach for solving the Con-
tainer Loading (CL) problem based on the combination of Integer Linear Pro-
gramming (ILP) and Genetic Algorithms (GAs). More precisely, a GA engine 
works as a generator of reduced instances for the original CL problem, which 
are formulated as ILP models. These instances, in turn, are solved by an exact 
optimization technique (solver), and the performance measures accomplished 
by the respective models are interpreted as fitness values by the genetic algo-
rithm, thus guiding its evolutionary process. Computational experiments per-
formed on standard benchmark problems, as well as a practical case study  
developed in a metallurgic factory, are also reported and discussed here in a 
manner as to testify the potentialities behind the novel approach. 

Keywords: Combinatorial Optimization, Hybrid Methods, Container Loading, 
Integer Linear Programming, Metaheuristics, Genetic Algorithms. 

1   Introduction 

Roughly speaking, the Container Loading (CL) problem alludes to the task of packing 
boxes into containers. More precisely, given the dimensions of the containers and the 
boxes which need to be loaded, the problem can be defined as to find such an  
arrangement of boxes that optimizes a given objective function – in general, the maxi-
mum volume of the loaded boxes. In addition to the geometric constraints, other  
restrictions can also be considered, such as boxes orientation and cargo stability. 

New variants of the CL problem have constantly appeared in the literature, making 
difficult the development of a single technique to efficiently handle all of them. In [2], 
two different perspectives on this problem were taken into account. In the first, a par-
ticular combination of containers should be chosen in a manner as to completely 
transport a given cargo. In the second, the larger volume of a given cargo is sought to 
be allocated into a single container. Anyway, the CL problem can be regarded as a 
special case of the family of Cutting and Packing (CP) problems [4][5]. 

In general, the CP problems can be easily formulated and understood, revealing a 
simplicity that contrasts directly with their real complexity. The importance of this 
class of problems is well acknowledged in the domains of Computer Science and  
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Operations Research. In addition, their tackling by recently-proposed methods has 
provided relevant contributions to the improvement of real-world activities in the in-
dustry sector. Due to their inherent difficulty, however, there is still much room for 
the conception of more sophisticated solution methods to these problems. 

A variety of mathematical formulations for CP problems can be easily found in the 
literature. For instance, in [7], an Integer Linear Programming (ILP) model for a uni-
dimensional cutting stock problem is formulated. Conversely, in [1], a 0-1 ILP model 
is conceived for a two-dimensional cutting problem. This particular model was later 
extended for dealing with the 3D case of the CL problem [8]. Even though the theo-
retical rigor of these models comes to be very appealing, the direct application of ex-
act algorithms for their implementation has proven to be computationally viable only 
for problem instances of very limited size. 

Due to the NP-completeness difficulty inherent to the CP problems, the majority of 
the successful approaches that have been lately proposed for coping with them have 
exploited, in a way or another, some source of heuristic information [10]. For in-
stance, the combination of Genetic Algorithms (GAs) with some type of heuristic 
placement schemes has recently emerged as a promising line of investigation, being 
addressed by several works in the literature (e.g., see [15] and the references therein). 

In this paper, we introduce a novel approach for solving the CL problem, which 
follows an alternative research direction to those mentioned above. Such direction is 
more in line with the current trend of hybridizing exact and metaheuristic techniques 
into unique solutions for Combinatorial Optimization (CO) problems [6]. Overall, the 
major rationale behind this sort of hybridization lies in the attempt of combining, in 
an efficient and effective manner, the complementary advantages displayed by both 
classes of optimization techniques. In practice, in one way, this might provide optimal 
solutions with shorter execution time; in the other way around, the result would be to 
obtain novel heuristic solutions more tailored to the specific problem at hand [10]. 

A general classification of the hybrid methodologies distinguishes them into two 
main categories: collaborative combinations and integrative combinations [12]. By 
collaboration, it means that the constituent algorithms exchange information to each 
other, but none is part of the other. The algorithms may be executed sequentially, in-
tertwined or in parallel. By integration, it means that one technique is a subordinate 
component of the other. Thus, there is the distinction between a master algorithm – 
which could be either an exact method or a metaheuristic – and a slave algorithm. 

Few applications of this class of hybrid algorithms to CP problems have been  
investigated yet. One of these works [9] combines interior point algorithms and meta-
heuristics in order to solve the knapsack problem. By other means, in [11], a combina-
tion of genetic and Branch-and-Bound algorithms for the two-dimensional cutting 
stock problem is described. Moreover, in [13], a different hybrid approach is proposed 
for the 3D container loading problem, whereby local search techniques are  
incorporated into an exact algorithm. 

In what follows, we present our hybrid approach for tackling the CL problem1, 
which is based on a particular framework combining ILP and GA techniques. In fact, 
it is our feeling that such framework is generic enough for coping well with other 

                                                           
1 More specifically, the CL variant we are considering here can be classified as “3/B/O/”  

according to the taxonomy proposed by Dyckhoff [4]. 
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types of CP problems and, for this reason, it is introduced in Section 0 through a more 
broad stance, after which it is specifically realized for the CL case. In the sequel, we 
present and discuss some simulation results we have achieved by experimenting with 
a series of benchmarking CL problem instances, as well as with a practical case study 
developed in a metallurgic factory, in order to assess the effectiveness of the novel 
approach, contrasting its performance with that achieved by alternative solutions. 
Some final remarks with indication for future work conclude the paper. 

2   Hybrid Framework 

The proposed framework prescribes the integration of two distinct conceptual compo-
nents, according to the setting illustrated in Fig. 1. The first component is named as 
the Generator of Reduced Instances (GRI), which is in charge of producing reduced 
problem instances of the original CP problem. In theory, any metaheuristic technique 
can be recruited for such a purpose, provided that the reductions carried out in the 
problem, while seeking to regulate the number of cutting and packing patterns, always 
respect the constraints imposed by the original problem. This is necessary to ensure 
that an optimal solution found for any novel problem instance would also be a feasi-
ble solution to the original problem. Conversely, the role of the second element, re-
ferred to as the Decoder of Reduced Instances (DRI), is to interpret and solve any of 
the generated problem instances coming out of the GRI. The optimal objective func-
tion values achieved with the solving of these sub-problems will serve as a feedback 
to the DRI, in a manner as to guide its search process. Any exact optimization tech-
nique (solver) could be, in thesis, a valid candidate to act as DRI. 
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Fig. 1. Hybrid framework under investigation 
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According to the classification recently proposed by Puchinger and Raidl [12], the 
methodology falls into the category of integrative combinations. The quality of the so-
lutions to the instances generated by the metaheuristic is determined when the sub-
problems are solved by the exact method. The best solution obtained throughout the 
whole metaheuristic process is deemed as the final solution to the original problem. 

Basically, the novel hybrid methodology, as informally described so far, roughly 
comprehends a sequence of three distinctive steps: 

 
1. Mathematical formulation of the problem. In this stage, the aspects to be incor-

porated in the formal model and the suppositions that can be made relating to the 
problem itself need to be specified. The desired objectives, the decision variables, 
and the considered constraints, all need to be made explicit in the mathematical 
formulation adopted. An erroneous formulation would certainly result in inefficient 
or incorrect solutions. 

2. Identification of the reducible structures. In principle, it should be possible to 
generate all the cutting patterns and solve the CP problem using an exact method. 
However, the number of cutting patterns tends to grow extraordinarily in practical 
cases. Thus the idea is to generate only a subset of these patterns in an efficient 
way. Among the main entities that control the number of cutting patterns are the 
different types of objects and items, their spatial dimensions, as well as the orienta-
tion constraints posed to these items. 

3. Specification of the metaheuristic sub-problem generator. Finally, the choice of 
the metaheuristic technique to act as GRI should be done. This issue, like the pre-
vious one, deserves greater attention by the framework user, since it is the GRI 
component that is in charge to discover the reduced version of the original problem 
that could still provide the more adequate solution to it. 
 
In the following, we provide an instantiation of the proposed hybrid framework to 

cope specifically with the CL problem. This particular choice was made because, as 
we have already mentioned in Section 154, the satisfactory tackling of the CL prob-
lem comes to be a non-trivial, challenging task, thus serving well the purposes of 
evaluation of the potentialities behind the novel approach. 

2.1   Application to the Container Loading Problem 

The three steps of the methodology are revisited in the sequence, each one providing de-
tailed information pertaining exclusively to the CL case considered here. Moreover,  
although not part of the hybrid framework, a layer construction component was incorpo-
rated into it as a particular extension for the CL problem, which is also detailed ahead. 

Mathematical Formulation of the CL Problem. To formulate the CL problem, we 
resort to the ILP model proposed in [8], which was further modified in order to allow 
the rotation of the boxes. Consider a set of boxes grouped in m types. For each box 
type i, characterized by its length, width, and height (li, wi, hi), there is an associated 
number of boxes bi. Besides, each box type i presents different modes of orientation 
in consonance with its orientation constraints. Consider all the n modes originating 
from the m box types. Each mode j is characterized by its length, width, height, and 
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type (lj, wj, hj, tj), and has associated with it a given volume vj. Consider also a con-
tainer that has L, W, H as its length, width, and height dimensions, respectively, and V 
as its associated volume. The boxes should be loaded orthogonally into the container. 
Each 0-1 variable of the model alludes to the decision of whether to place or not a box 
in mode j at the coordinate (x, y, z). It can be assumed that x, y and z belong to the  
following discretization sets: 
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To avoid the interposition of the boxes, the incidence matrix is defined as gjdefpqr: 

⎩
⎨
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hzzzwyyylxxx
g  , (4) 

which should be computed a priori for each mode j (j = 1, ..., n), for each position (xd, 
ye, zf), with d = 1, ..., |X|, e = 1, ..., |Y|, and f = 1, ..., |Z|, and for each position (xp, yq, 
zr), with p = 1, ..., |X|, q = 1, ..., |Y|, and r = 1, ..., |Z|. Other important parameter  
definitions come as follows: 

{ }itjJ ji == , (5) 

{ }jdj lLxdD −≤= max , (6) 

{ }jej wWyeE −≤= max , (7) 

{ }jfj hHzfF −≤= max , (8) 

ZfYeXdnjmi ,...,1 and ,...,1 ,,...,1 ,,...,1 ,,...,1with ===== .  

Likewise, it is important to consider the specification of the decision variables: 

( )
⎩
⎨
⎧

=
otherwise ,0

,,position at  allocated is  modein box  a if ,1 fed

jdef

zyxj
a , (9) 

ZfYeXdnj ,...,1 and ,...,1 ,,...,1 ,,...,1with ==== .  
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Finally, the CL problem can be formulated as: 

{ }1,0with 
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,...,1,,...,1,,...,1,1  ..
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(10) 

Identification of the Reducible Structures. The number of packing patterns of the 
model proposed for the CL problem under investigation can be defined by the amount 
of box modes n and by the cardinality of the discretization sets, namely |X|, |Y|, and 
|Z|. Several reduced instances of the original problem can then be eventually 
generated by excluding some of the box modes and/or some positions demarcated by 
the discretization sets. 

Specification of the Metaheuristic Sub-problem Generator. A modified genetic 
algorithm has been implemented to account for the GRI task. Each of its individuals is 
represented by a binary chromosome, which encodes a particular set of discretization 
points to the aforementioned ILP model. In this encoding, each gene (bit) represents one 
possible element of discretization along a particular dimension, as shown in  
Fig. 2. Assigning a null value to a bit means that its associated element of discretization 
will not be used for the construction of the reduced problem; by flipping the value of 
this gene to one, the element will take part in the reduced CL problem instance. 

As mentioned earlier, each sub-problem should be solved by an exact method play-
ing the role of the DRI. The optimal solution value attained for this problem instance – 
which represents the actual space used up in the container – is assigned as  
 

 
Discretization Sets:
 
X = {0, 3, 5, 6, 8, 9}   x1x2x3x4x5x6

Y = {0, 4, 7, 8}   y1y2y3y4 
Z = {0, 2, 4, 6, 7, 8}  z1z2z3z4z5z6 
 
Chromosome: 
 
x1 x2 x3 x4 x5 x6  |  y1 y2 y3 y4  |  z1 z2 z3 z4 z5 z6 
1  0  0  1  0  1      1  1  0  1      1  1  1  0  1  0 

 

Fig. 2. The chromosome representation 
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the fitness value of its corresponding GA individual. For those cases where it is not 
possible to solve, or even generate, the instance model, due to the sub-problem’s  
inherent complexity and/or to other computational limitations of the solver environ-
ment, the corresponding GA individual is discarded from the pool and another  
chromosome is randomly generated to take its place. 

For the initial population, p chromosomes are generated in the following manner: 
One of the modes is randomly chosen and, then, only the elements proportional to the 
respective dimensions of this mode will be considered for being selected to take part 
in the problem instance. Standard selection/variation operators are applied iteratively 
over the individuals across generations. More precisely, individuals are selected for 
mating and for replacement with the help of the roulette wheel selection mechanism. 
Furthermore, the single-point crossover is adopted with rate τc, whereas the simple 
mutation operator is applied with different rates for each chromosome segment. These 
mutation rates vary according to the length of the respective discretization set: 

XmX 1=τ , YmY 1=τ , and ZmZ 1=τ . A maximum number of iterations τg, a pre-

fixed interval of convergence c, as well as a maximum limit on the execution time of 
the whole framework t (in hours), are used in concert as stopping criteria. 

Layer Construction Heuristics. To cope specifically with the CL problem, a layer 
construction component was incorporated to limit the effective size of the container. 
By this means, each generated layer can be treated as a distinct CL problem, which 
must be solved by the hybrid algorithm. The solution of the original problem is 
constructed in sequential steps. Two strategies were used to control the effective 
length of the layer: (a) MaxMax, whereby the size of the container is set in accordance 
with that type of box with the largest dimension; and (b) MaxMin, whereby the size is 
regulated by that type of box showing the largest of the overall small dimensions. 
When the size of the free length of the container becomes smaller than the size of the 
layer, the remaining space is considered in this iteration. 

3   Computational Experiments 

To evaluate the potentialities behind the novel approach, a series of experiments have 
been conducted by our group, and some of the preliminary results achieved so far are 
discussed in the following subsections. For conducting these experiments, the GRI 
metaheuristic (GA) was developed in Delphi language, whereas an implementation of 
the overall hybrid framework has been executed and tested on an Intel Pentium 4 3.2 
GHz platform with 1GB of RAM memory available. For implementing the DRI com-
ponent of the framework, we have made use of a LINGO 8.0 DLL as well. 

3.1   Benchmarking Problems 

Some experiments have been performed over the Thpack group of problems of the 
OR-Library available at http://people.brunel.ac.uk/~mastjjb/jeb/info.html. For these 
problems, the two layer-construction strategies described in the previous section, viz. 
MaxMax and MaxMin, have been adopted in turn. (Actually, for each strategy, only 
one separate execution of the framework is carried out.) The meta-parameters of the 
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GA engine have been set as follows, after some experimental calibration: p = 50 indi-
viduals, τc = 0.5, τg = 50 iterations, c = 10 iterations, and t = 1 hour. 

In Table 1, the best result – in terms of volume utilization of the container VHA – 
achieved by our hybrid approach (HA) for each problem of the Thpack1 group is 
shown, along with the heuristic strategy adopted. Conversely, in Tables 2 and 3, we 
contrast the performance of the hybrid approach with that exhibited by the well-
known combined heuristic B/R, proposed by Bischoff and Ratcliff [3], in those prob-
lem instances where the latter have presented the worst and best performance indices, 
respectively. These instances are presented in accordance with the amount of box 
types considered (groups Thpack1–Thpack7). 

Overall, our hybrid methodology has been obtaining satisfactory results with these 
benchmarking problems. For instance, on average, considering all the problem in-
stances in Table 1, we have achieved the mark of 87.52% (±3.49) of effective usage 
of the container space, outperforming the 85.40% (±4.30) score achieved by the com-
bined heuristic B/R. Considering the results in Tables 2 and 3, the hybrid algorithm 
outperforms the heuristic B/R in the worst-case instances, whereas, in the best-case 
instances, the heuristic B/R prevails. On average, the new methodology has shown 
superior performance, reaching the mark of 86.53% of effective volume utilization of 
the container across all problem instances against the 83.53% score achieved by the 
heuristic B/R. 

Table 1. Results obtained for the first 50 problems of the Thpack1 group 

Problem VHA (%) Strategy Problem VHA (%) Strategy 
01 89.29 MaxMax 26 83.19 MaxMax 
02 89.95 MaxMin 27 86.00 MaxMax 
03 81.02 MaxMin 28 88.51 MaxMin 
04 88.50 MaxMin 29 91.72 MaxMax 
05 90.26 MaxMax 30 90.08 MaxMin 
06 90.11 MaxMax 31 89.17 MaxMin 
07 81.41 MaxMax 32 92.06 MaxMax 
08 88.22 MaxMax 33 84.36 MaxMin 
09 87.60 MaxMax 34 89.40 MaxMax 
10 87.92 MaxMax 35 84.04 MaxMin 
11 89.19 MaxMin 36 89.11 MaxMax 
12 88.18 MaxMin 37 91.75 MaxMax 
13 90.11 MaxMax 38 80.85 MaxMax 
14 86.37 MaxMin 39 89.15 MaxMax 
15 85.92 MaxMax 40 88.79 MaxMax 
16 86.98 MaxMax 41 86.44 MaxMin 
17 90.64 MaxMin 42 91.34 MaxMin 
18 80.55 MaxMax 43 91.37 MaxMax 
19 90.37 MaxMin 44 76.01 MaxMin 
20 90.57 MaxMin 45 88.80 MaxMax 
21 89.27 MaxMin 46 87.73 MaxMax 
22 87.89 MaxMax 47 82.16 MaxMax 
23 83.03 MaxMax 48 88.17 MaxMax 
24 86.35 MaxMin 49 89.12 MaxMax 
25 87.31 MaxMax 50 91.23 MaxMax 
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Table 2. Comparative results for the worst case instances of B/R in groups Thpack1–Thpack7 

Group Problem B/R (%) VHA (%) Strategy 
Thpack1 44 73.72 76.01 MaxMin 
Thpack2 11 73.79 86.19 MaxMax 
Thpack3 46 75.33 87.88 MaxMax 
Thpack4 93 78.38 88.10 MaxMin 
Thpack5 70 78.71 86.94 MaxMin 
Thpack6 93 75.22 87.60 MaxMin 
Thpack7 74 75.73 87.89 MaxMin 

Table 3. Comparative results for the best case instances of B/R in groups Thpack1–Thpack7 

Group Problem B/R (%) VHA (%) Strategy 
Thpack1 39 94.36 89.15 MaxMax 
Thpack2 33 93.76 87.47 MaxMin 
Thpack3 49 92.63 90.54 MaxMin 
Thpack4 22 90.06 85.26 MaxMin 
Thpack5 41 90.39 87.18 MaxMin 
Thpack6 58 89.15 86.15 MaxMax 
Thpack7 51 88.28 85.11 MaxMin 

3.2   Case Study 

The hybrid methodology has also been applied in the ambit of a large metallurgic  
factory. This particular industrial unit has usually made use of a load planning and ac-
commodation system that is quite well known in the market, namely MaxLoad Pro 
[14]. In Table 4, some configuration data related to the problems being tackled by our 
group are presented, where L, W, and H refer to the length, width, and height dimen-
sions of the container, respectively, while l, w, and h refer to the length, width, and 
height dimensions of the boxes in that order, and b denotes the amount of items de-
manded in the order. 

In Table 5, some results are displayed contrasting the performance achieved by the 
proposed hybrid approach (HA) with that achieved by MaxLoad (ML). In this table, 
XML and VML refer to the number of boxes allocated and the volume effectively used in 
the container produced with the ML system, respectively, while XHA and VHA refer to 
the number of boxes allocated and the space effectively occupied in the container 
produced with the help of the hybrid methodology. 

 

Table 4. Configuration data for the case study 

Problem L W H l w h b 

01 12000 2340 2680 1585 655 580 120 
02 12000 2340 2680 1730 650 640 80 
03 12000 2340 2680 870 585 525 280 
04 12000 2340 2680 870 585 785 180 
05 5810 2330 2380 870 585 525 120 
06 5810 2330 2380 1585 655 580 50 
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Table 5. Results obtained for the practical cases studied 

Problem XML VML (%) XHA VHA (%) 

01 101 80,8 117 93,2 
02 80 76,5 80 76,5 
03 264 93,7 272 96,6 
04 180 95,6 180 95,6 
05 110 91,2 115 95,4 
06 45 84,1 47 87,8 

 

Fig. 3. Packing pattern produced by ML, with 45 loaded boxes (instance #06) 

 

Fig. 4. Packing pattern produced by HA, with 47 loaded boxes (instance #06) 
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Among the six problem instances considered, the hybrid approach was able to find 
the best solutions in four of the cases, with a tie in the other two. The most expressive 
result was obtained in instance #01, where the difference between the two contestants, 
in terms of the volume effectively used in the container, was of 12.4%. It is worth to 
emphasize that, in this circumstance, the hybrid methodology was applied with no 
layer construction heuristic within. Moreover, the control parameters of the GA en-
gine were set as follows: p = 50 individuals, τc = 0.5, τg = 50 iterations, c = 10 itera-
tions, and t = 5 hours. Although the current instantiation of the framework has not yet 
explicitly considered constraints on the cargo stability, we could verify that the solu-
tions achieved represent stable loadings for the instances studied. In Figs. 3 and 4, the 
packing patterns produced by both approaches are illustrated for instance #06. 

4   Final Remarks 

In this work, we have introduced a novel methodology for solving the CL problem, 
which is based on a particular type of hybridization between an exact (ILP) and an ap-
proximate (GA) optimization method. Up to now, the results achieved by the approach, 
with regard to the series of experiments we have performed, have been very satisfactory, 
taking into account that those problem instances could not be directly solved through the 
application of the exact optimization package alone. For both scenarios considered in this 
paper, viz. benchmarking problems and a real case study, the hybrid methodology has 
presented competitive solutions to those provided by a well-known heuristic and a com-
mercial tool, respectively, prevailing on average over them. 

In order to evaluate the generalization level behind the novel methodology, we 
plan, as future work, to develop and test other instantiations of the conceptual frame-
work for coping with other types of CP problems. Likewise, it is in our plans to inves-
tigate other types of metaheuristics (like trajectory-based or even hybrid ones) to play 
the role of the GRI component in the framework. 

Acknowledgments. The first and third authors gratefully acknowledge the financial 
support received from FUNCAP, through a Master’s scholarship, and from 
CNPq/FUNCAP, through a DCR grant (project number 23661-04). 
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Abstract. In this paper we present a population-based local search for
solving a bi-objective vehicle routing problem. The objectives of the prob-
lem are minimization of the tour length and balancing the routes. The
algorithm repeatedly generates a pool of good initial solutions by using a
randomized savings algorithm followed by local search. The local search
uses three neighborhood structures and evaluates the fitness of candi-
date solutions using dominance relation. Several test instances are used
to assess the performance of the new approach. Computational results
show that the population-based local search outperforms the best known
algorithm for this problem.

1 Introduction

The vehicle routing problem (VRP), introduced in [1], consists of finding the
optimal route for a fleet of vehicles, starting and ending at a single depot, that
must serve a set of n customer demands such that each customer is visited by
only one vehicle route. If each vehicle can only collect a maximum capacity of
Q units of demands, then the problem is known as capacitated VRP (CVRP).

Although exact approaches [2,3] have been proposed to solve the VRP, many
approximation methods have been developed since VRP has been proven NP-
hard [4]. Some examples of these methods are the classical heuristics such as
the well-known savings algorithm [5]. These methods put more emphasis on the
ability to search a good feasible solution.

Over the last 15 years, increasing research effort has been devoted on the de-
velopment of metaheuristic approaches since they can search the solution space
much more thoroughly. The metaheuristic approaches use either the principle
of local search or population search [6,7]. Local search methods approximate a
region of the Pareto front in the direction given by a weight vector λ using a
single solution. The aggregation of the objectives via λ is usually used in order
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to focus the search on the region of interest. On the other hand, population
searches such as the adaptive memory procedure [8] and SavingsAnts [9] main-
tain a pool of solutions called population that move together through evolution
process towards the Pareto front. In many cases, local search methods are used
to improve the quality of the solutions in the population.

In recent years, metaheuristics have also been used to solve vehicle routing
problems with multiple objectives. For instance, a bi-objective CVRP with route
balancing (CVRPRB) was tackled using genetic algorithms [10,11]. The two
objectives of CVRPRB are (i) to minimize the sum of the total distance travelled
by each vehicle and (ii) to minimize the difference between the longest and
shortest vehicle tours.

In general, there is no single solution that simultaneously accomplishes the
objectives of a bi-objective optimization problem. Hence, the Pareto optimal
solutions or sometimes called the set of efficient solutions are considered. We say
that a solution x is an efficient solution if there exists no other feasible solution
y such that fk(y) ≤ fk(x), for k = 1, 2 and fk(y) < fk(x) for some k. Otherwise,
we say that x is dominated by y and we denote this by y ≺ x. In addition, if
x∗ is Pareto optimal then z∗ = f(x∗) is called nondominated vector and the set
of all nondominated vectors is referred to as nondominated frontier (or Pareto
front or trade-off surface).

In this paper, we propose another approach in solving the CVRPRB by com-
bining the principles of population search and local search. Our approach starts
by generating a pool of good starting solutions using a randomized savings algo-
rithm. These solutions then undergo local search that uses three neighborhood
structures. The candidate solutions in the local search are evaluated using dom-
inance relation. In the following discussions, we will refer to our method as
population-based local search or P-LS.

This paper is organized as follows: Section 2 explains the details of P-LS.
Section 3 discusses the numerical results of the study and Section 4 provides a
short conclusion of the study.

2 Population-Based Local Search for CVRPRB

The P-LS method follows the two basic steps given by Algorithm 1. The first step
is the initialization phase or the creation of the starting solutions. The second
step is the local search phase where we apply our local search operators. In the
following sections, we describe the details how we implemented these steps.

Algorithm 1. Basic algorithmic framework of P-LS

While (condition is satisfied) Do /*We call this loop as generation*/
Create a pool of solutions S
Apply local search on the solutions of S
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2.1 Initialization Phase of P-LS

Being a population-based heuristic, the starting solutions of P-LS are important.
It was demonstrated in [12,13,14] that spending time in creating a good initial
population improves the convergence in optimization. Hence, we use a pool of
good starting solutions for our P-LS. Our strategy in creating the initial solutions
uses the randomized savings algorithm or savings algorithm with candidate list.
The savings algorithm starts with the assignment of each customer to a separate
tour. The customers or the partial tours are then combined based on the savings
values given by s(i, j) = d(i, 0) + d(j, 0) − d(i, j) where d(i, j) is the distance
between customers i and j and the index 0 denotes the depot. Clearly, s(i, j)
is the value saved when i and j are combined instead of serving them by two
different tours. The combination of customers begins with the largest savings
until no more combination is feasible.

Instead of combining the customers having the largest savings, the randomized
savings algorithm creates a candidate list C of feasible combinations of customers
i and j. The set C consists of the combinations with the |C| best savings values.
Each combination in the candidate list is selected with equal probability. After
combining the selected pair of customers, the combinations in C that become
infeasible are removed and we maintain the size of C by adding the next feasible
combinations with the best savings values.

To generate the starting solutions of P-LS, a pool S of identical solutions are
initially created. These identical solutions assign each customer to a separate
tour. We improve each of these solutions by combining the customers based on
the randomized savings algorithm. We then apply 2-opt local operator to the
solutions of S in order to avoid artificially balanced solutions [11]. In P-LS, we
apply our local search operators only to the nondominated solutions. Hence, we
remove all dominated solutions in S before proceeding to the local search phase.

2.2 Local Search Phase of P-LS

The local search phase uses one intratour-neighborhood called 2-opt and two
intertour-neighborhood structures namely move and swap. The move neigbor-
hood inserts the customer of one partial tour to another partial tour. On the
other hand, the swap neighborhood exchanges two customers from different par-
tial tours. After performing either the insertion or exchange operator, the 2-opt
operator is applied to the affected partial tours.

The basic step of the local search phase is described in Algorithm 2. This step
was called multiobjective local search in [15] and pareto local search in [16] and
it was implemented in scheduling problem using a single neighborhood structure.
The main difference of our approach compared to the existing techniques is that
we use three different neighborhood structures. It has been shown in [9,17] that
these three neighborhoods are effective for the single objective classical VRP.

Starting from a solution z ∈ S, the feasible solutions of the first neighborhood
N1 of z are explored. All feasible neighboring solutions are compared and the
dominated ones are removed. Each of the remaining efficient solution will un-
dergo the same process as z i.e., its entire neighborhood is searched and all the
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dominated solutions are removed. We repeat the entire process of searching the
whole neighborhood and removing the dominated solutions until all solutions in
the neighborhood are dominated. When this happen, Algorithm 2 is repeated
on P using the second neighborhood N2. Unless the termination conditions are
not satisfied after performing N2, we apply N1 again on the pareto set returned
by N2. Since exploring the entire neighborhood of a given solution is computa-
tionally expensive, we only allow a certain number of solutions to undergo the
local search. Figure 1 illustrates this process.

Algorithm 2. Basic step of the local search phase

Pareto set S
t = 0
While (S is non-empty and t < M) Do /*We call this loop as iteration*/

Pareto set C = ∅
Forall z ∈ S do

Pareto set L ← z
Forall w ∈ Ni(z) do

If w /∈ L and w is not dominated by L then
Set L = nondominated solutions of (L ∪ {w}) and
Set C = nondominated solutions of (C ∪ {w})

S = C
Update Pareto set P by C
t = t + 1

Return P

3 Numerical Results

The numerical analysis was performed on a set of benchmarks described in [18].
The set of benchmarks consists of 7 test instances having 50 to 199 customers
and a single depot. Four of the instances were generated such that the customers
are uniformly distributed on a map and the remaining instances feature clusters
of customer locations. All test instances have capacity constraints. We performed
all our methods on a personal computer with 3.2 Ghz processor; the algorithms
were coded in C++ and compiled using GCC 4.1.0 compiler.

3.1 Evaluation Metrics

The use of unary quality indicators has become one of the standard approaches
in assessing the performance of different algorithms for bi-objective problems. It
complements the traditional approach of using graphical visualization which may
provide information on how the algorithm works [19]. This study considered three
unary quantitative measures namely, the hypervolume indicator, unary epsilon
indicator, and R3 indicator.

Th hypervolume indicator (IH) measures the hypervolume of the objective
space that is weakly dominated by an approximation set or the set containing the
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Fig. 1. The boxes represent the efficient solutions. The solid circles are the feasible
solutions in the neighborhood of an efficient solution. The encircled solutions are the
efficient neighbors which become the new efficient solutions of S . (a) Four efficient
solutions are found using N1. (b) After exploring the neighborhoods of these efficient
solutions, 3 new efficient solutions are found and 2 efficient solutions from (a) remain
efficient. (c) Not a single neighbor of efficient solutions in (b) is efficient. (d) N2 is
then used and 4 of the neighbors are found to be efficient. (e) The N2-neighborhood
of the efficient solutions in (d) does not have any efficient solution this time. (f) Since
N2 generated new efficient solutions, the current set of efficient solutions will again be
explored using N1.

nondominated frontier of an approximation method [20]. This is calculated using
a boundary point that is dominated by all approximation sets. It has a desirable
property that whenever an approximation set A is better than approximation
set B, then the hypervolume of A is greater than B.

The unary epsilon indicator Iε gives the minimum factor ε such that if every
point in reference set X is multiplied by ε, then the resulting approximation set
is weakly dominated by A. For minimization problem, this indicator is formally
defined by:

Iε(A) = Iε(A, X) = inf
ε∈X

{∀z2 ∈ X∃z1 ∈ A : z1 
ε z2
}

(1)

where the ε-dominance relation is defined as z1 
ε z2 ⇔ ∀i ∈ 1, 2, . . . , n : z1
i ≤

ε · z2
i . Note that a small ε value is preferable.

The R3 indicator (IR3) used in this study is one of R indicators proposed in
[21]. Given a set of weight vectors Λ, this indicator is defined as:

IR3(A) = IR3(A, X) =
∑

λ∈Λ [u∗(λ, X)− u∗(λ, A)] /u∗(λ, A)
|Λ| (2)

where u∗ is the maximum value attained by a utility function uλ with weight λ,
i.e., u∗(λ, A) = maxz∈A uλ(z). In this study, the utility function is given by:
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uλ(z) = −
⎛

⎝ max
j∈1..n

λj |z∗j − zj |+ ρ ·
∑

j∈1..n

|z∗j − zj |
⎞

⎠ (3)

where z∗ is the ideal point and ρ is a sufficiently small positive real number. The
values of IR3 range from -1 to 1 where values close to -1 are superior.

3.2 Parameter Settings

The initial number of solutions in each pool S is equal to the number of cus-
tomers. The size of the candidate list is given by �0.10× (# of customers+1).
The maximum number of solutions in S that undergo local search is ten. These 10
solutions are chosen so that the corresponding nondominated points are evenly
distributed in the objective space i.e., dividing the relevant section in equally-
sized segments. The value of M is either 100 or 150 for the move-neighborhod
and 50 to 75 for the swap-neighborhood.

3.3 Analysis

Ten runs with different random seeds were performed for each of the test in-
stance. Before applying the different unary indicators, all approximation sets
are normalized between 1 and 2. The boundary point used in the hypervolume
indicator is (2.1, 2.1), and the ρ and |Λ| in IR3 are 0.01 and 500 respectively
[19]. The reference set for each test instance consists of the points that are not
dominated by any of the approximation sets generated by all algorithms under
consideration.

The performance of P-LS is compared to the Nondominated Sorting Genetic
Algorithm II (NSGA II) developed in [22] and proposed as algorithm for CVR-
PRB in [10]. The NSGA II approach for CVRPRB was enhanced by paralleliza-
tion and by the use of elitist diversification mechanism. Several implementations
of NSGA II which have different number of Power4 1.1 Ghz processors were
examined. The average computation time ranged from 900 to 5200 seconds.
We used the only available results of one of the NSGA II variants found in
http://www2.lifl.fr/jozef/results VRPRB.html for comparison.

In this study, we demonstrate the importance of randomized savings algorithm
in generating the pools of initial solutions. To do this, we compare our P-LS to
a P-LS that generates solutions randomly. We call this method as P-LS-0. In
addition, we also investigate the advantage of allowing our P-LS to use more
starting solutions by comparing our method to a P-LS where M=∞. We refer
to this method as P-LS-1. All three methods are terminated after reaching a
computational time that ranges from 600 to 30000 seconds depending on the
test instance.

Figure 2 shows the boxplots of the different unary indicators for all test in-
stances1. A boxplot provides a graphical summary of the median, the range and
1 The first number in the name of each test instance corresponds to the total number of

customers and depot. The last letter determines whether the customers are clustered
(c) or uniformly distributed (e).
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Fig. 2. Box plots of the different unary indicators for all test instances. High hyper-
volume values and low unary epsilon and R3 values are preferable.
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inter-quartile range, and the orientation of the median relative to the quartiles
for a set of data.

P-LS and P-LS-0. For all test instances, the boxplots of P-LS are better than
that of P-LS-0. It can be observed that the positive effect of the randomized
savings algorithm is more evident in larger instances (at least 120 customers).
Thus the good performance of P-LS can be attributed to the quality of starting
solutions generated by the randomized savings algorithm.

P-LS and P-LS-1. Allowing the P-LS to have more pools improves the perfor-
mance P-LS with respect to hypervolume and unary epsilon indicators in all but
one test instance. However, the R3 indicator gets worse in many test instances.
To explain why this may happen, we consider the first runs of P-LS and P-LS-1
for test instance E151-12c. Figure 3 provides the unary quality indicators and
the plots of the efficient points for this case. It is clear from these plots that
the best objective values of P-LS with respect to total distance are much better
than that of P-LS-1 and this translates into bigger hypervolume. In addition,
P-LS-1 is slightly better than P-LS in the middle region. It has more points in
this region and most of them belong to the reference set. This slight difference
in the middle area may not compensate the gains of P-LS with respect to hy-
pervolume but this helps P-LS-1 to have a better R3 indicator value. Regarding
the unary epsilon, it is also clear from the graph that P-LS-1 requires a bigger
factor in order for its approximation set to weakly dominate the reference set.

Fig. 3. Plots the nondominated frontiers of the first run of P-LS and P-LS-1 for test
instance E151-12c. The region in the middle enclosed in a box is enlarged.

P-LS and NSGA II. The boxplots of the three unary quality indicators of
P-LS is better than NSGA II for all instances. In fact, all the median values of
P-LS are better than the median values of NSGA II and for many cases, the
median values are better than the best values of NSGA II. This shows that our
P-LS approach performs well in all the test instances that were used. It is also
interesting to note that P-LS-0 and P-LS-1 are also better than NSGA II with

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



174 J.M. Pasia et al.

respect to the three unary quality indicators for some instances. For example,
all three P-LS approaches are better than NSGA II in test instances E101-10c
and E101-08e.

4 Conclusion

In this study, we proposed the P-LS or population-based local search to solve
a bi-objective vehicle routing problem. The P-LS uses a pool of good starting
solutions generated by a randomized savings algorithm. All efficient solutions
in the pool were allowed to undergo local search. Our local search approach
uses three neighborhoods and and the candidate solutions were evaluated using
dominance relation.

Computational results showed that our P-LS approach performed well com-
pared to NSGA II with respect to three unary quality indicators. We have also
demonstrated that using the randomized savings algorithm improves the solu-
tions quality of P-LS. We have also shown that the performance of P-LS improves
when we allow our P-LS to use more starting pools of initial solutions.

In the future, we intend to apply our P-LS to the large-scale VRP instances.
We also intend to extend our P-LS approach to VRP with more than two objec-
tives, e.g. load balancing, number of vehicles. Moreover, we plan to apply P-LS
to other multiobjective combinatorial problems.
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Abstract. We present a Lagrangian decomposition approach for the
Knapsack Constrained Maximum Spanning Tree problem yielding upper
bounds as well as heuristic solutions. This method is further combined
with an evolutionary algorithm to a sequential hybrid approach. Exper-
imental investigations, including a comparison to a previously suggested
simpler Lagrangian relaxation based method, document the advantages
of the new approach. Most of the upper bounds derived by Lagrangian de-
composition are optimal, and together with the evolutionary algorithm,
large instances with up to 12000 nodes can be either solved to provable
optimality or with a very small remaining gap in reasonable time.

1 Introduction

The Knapsack Constrained Maximum Spanning Tree (KCMST) problem has
been introduced by Yamamato and Kubo [1]. It arises in practice in certain
situations where the aim is to design a profitable communication network under
a strict limit on total costs for cable laying or similar resource constraints.

We are given an undirected connected graph G = (V, E) with node set V and
edge set E ⊆ V × V representing all possible connections. Each edge e ∈ E has
associated a weight we ∈ Z+ (corresponding to costs) and a profit pe ∈ Z+.
In addition, a weight limit (capacity) c > 0 is specified. A feasible KCMST
is a spanning tree T ⊆ E on G, i.e. a cycle-free subgraph connecting all nodes,
whose weight

∑
e∈T we does not exceed c. The objective is to find a KCMST with

maximum total profit
∑

e∈T pe. More formally, we can introduce binary variables
xe, ∀e ∈ E, indicating which edges are part of the solution, i.e. xe = 1↔ e ∈ T
and xe = 0 otherwise, and write the KCMST problem as:

max p(x) =
∑

e∈E

pexe (1)

C. Cotta and J. van Hemert (Eds.): EvoCOP 2007, LNCS 4446, pp. 176–187, 2007.
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s. t. x represents a spanning tree (2)
∑

e∈E

wexe ≤ c (3)

xe ∈ {0, 1} ∀e ∈ E (4)

Obviously, the problem represents a combination of the classical minimum span-
ning tree problem (with changed sign in the objective function) and the classical
0–1 knapsack problem due to constraint (3). Yamada et al. [2] gave a proof for
the KCMST problem’s NP-hardness.

After summarizing previous work for this problem in the next section, we
present a Lagrangian decomposition approach in Section 3. It is able to yield
tight upper bounds as well as lower bounds corresponding to feasible heuristic so-
lutions. Section 4 describes an evolutionary algorithm for the KCMST problem
utilizing the edge-set representation. Section 5 explains how this evolutionary
algorithm can be effectively combined with the Lagrangian decomposition ap-
proach in a sequential manner. Experimental results are presented in Section 6.
They document the excellent performance of the whole hybrid system, which
is able to solve almost all test instances with graphs of up to 12000 nodes to
provable optimality or with a very small gap in reasonable time.

2 Previous Work

While numerous algorithms and studies exist for the standard minimum span-
ning tree problem, the 0–1 knapsack problem, and various related constrained
network design problems, we are only aware of the following literature specifically
addressing the KCMST problem.

Yamamato and Kubo [1] introduced this problem, but neither proved NP-
hardness nor presented any solution algorithms. This was first done by Yamada
et al. [2]. They described a Lagrangian relaxation approach in which the knapsack
constraint (3) is relaxed, yielding the simple maximum spanning tree problem
which can be solved efficiently. The Lagrangian dual problem of finding a best
suited Lagrangian multiplier for the relaxed weight constraint is solved by a
simple bisection method. The Lagrangian relaxation approach also yields feasible
heuristic solutions, which are further improved by a 2-opt local search. In order
to also determine provable optimal solutions for instances of restricted size, the
Lagrangian relaxation is embedded in a branch-and-bound framework. While the
approach is able to optimally solve instances with up to 1000 nodes and 2800
edges when edge weights and profits are uncorrelated, performance degrades
substantially in the correlated case.

The only other work for the KCMST problem we are aware of is the first
author’s master thesis [3]. It formed the basis for this article, and we refer to it
for further details, in particular for more computational results.

The problem also exists in its minimization version [4], for which Jörnsten
and Migdalas document the superiority of Lagrangian decomposition, and sub-
sequently solving each subproblem to optimality, for generating valid bounds [5].
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3 Lagrangian Decomposition for the KCMST Problem

Lagrangian relaxation is a commonly used technique from the area of mathe-
matical programming to determine upper bounds for maximization problems.
Though the solutions obtained are in general infeasible for the original problem,
they can lend themselves to create feasible solutions and thus to derive lower
bounds, too. For a general introduction to Lagrangian relaxation, see [6,7,8]. La-
grangian Decomposition (LD) is a special variant that can be meaningful when
there is evidence of two or possibly more intertwined subproblems, and each of
them can be efficiently solved on its own by specialized algorithms.

As the KCMST problem is a natural combination of the maximum spanning
tree problem and the 0–1 knapsack problem, we apply LD by aiming at such a
partitioning. For this purpose, we split variables xe, ∀e ∈ E, by introducing new
variables ye and including linking constraints, leading to the following equivalent
reformulation:

max p(x) =
∑

e∈E

pexe (5)

s. t. x represents a spanning tree (6)
∑

e∈E

weye ≤ c (7)

xe = ye ∀e ∈ E (8)
xe, ye ∈ {0, 1} ∀e ∈ E (9)

The next step is to relax the linking constraints (8) in a Lagrangian fashion using
Lagrangian multipliers λe ∈ R, ∀e ∈ E. By doing so we obtain the Lagrangian
decomposition of the original problem, denoted by KCMST-LD(λ):

max p(x) =
∑

e∈E

pexe −
∑

e∈E

λe(xe − ye) (10)

s. t. x represents a spanning tree (11)
∑

e∈E

weye ≤ c (12)

xe, ye ∈ {0, 1} ∀e ∈ E (13)

Stating KCMST-LD(λ) in a more compact way and emphasizing the now inde-
pendent subproblems yields

(MST) max {(p− λ)T x | x =̂ a spanning tree, x ∈ {0, 1}E} + (14)
(KP) max {λT y | wT y ≤ c, y ∈ {0, 1}E}. (15)

For a particular λ, the maximum spanning tree (MST) subproblem (14) can
be efficiently solved by standard algorithms. In our implementation we apply
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Kruskal’s algorithm [9] based on a union-find data structure when the underlying
graph is sparse and Prim’s algorithm [10] utilizing a pairing heap with dynamic
insertion [11] for dense graphs. The 0–1 knapsack subproblem (15) is known
to be weakly NP-hard, and practically highly efficient dynamic programming
approaches exist [12], whereas we apply the COMBO algorithm [13].

It follows from Lagrangian relaxation theory that for any choice of Lagrangian
multipliers λ, the optimal solution value to KCMST-LD(λ), denoted by v
(KCMST- LD(λ)), is always at least as large as the optimal solution value of the
original KCMST problem, i.e., KCMST-LD(λ) provides a valid upper bound.
To obtain the tightest (smallest) upper bound, we have to solve the Lagrangian
dual problem:

minλ∈RE v(KCMST-LD(λ)). (16)

This dual problem is piecewise linear and convex, and standard algorithms like
an iterative subgradient approach can be applied for (approximately) solving it.
More specifically, we use the volume algorithm [14] which has been reported to
outperform standard subgradient methods in many cases including set covering,
set partitioning, max cut, and Steiner tree problems [15]. In fact, preliminary
tests on the KCMST problem also indicated its superiority over a standard sub-
gradient algorithm [3]. The volume algorithm’s name is inspired by the fact that
primal solutions are considered and that their values come from approximating
the volumes below the active faces of the dual problem.

3.1 Strength of the Lagrangian Decomposition

According to integer linear programming theory, Lagrangian relaxation always
yields a bound that is at least as good as the one obtained by the corresponding
linear programming (LP) relaxation. The Lagrangian relaxation’s bound can
be substantially better when the relaxed problem does not fulfill the integrality
property, i.e., the solution to the LP relaxation of the relaxed problem – KCMST-
LD(λ) in our case – is in general not integer.

For seeing whether or not this condition is fulfilled here, we have to consider
both independent subproblems. Compact models having the integrality property
exist for MST, see e.g. [16]. Furthermore, the integrality property is obviously
not fulfilled for the knapsack subproblem. Thus, we may expect to obtain bounds
that are better than those from the linear programming relaxation of KCMST.

In comparison, in the Lagrangian relaxation approach from [2] the knapsack
constraint is relaxed and only the MST problem remains. This approach therefore
fulfills the integrality property and, thus, is in general weaker than our LD.

We further remark that the proposed LD can in principle be strengthened by
adding the cardinality constraint

∑
e∈E ye = |V |−1 to the knapsack subproblem.

The resulting cardinality constrained knapsack problem is still only weakly NP-
hard, and pseudo-polynomial algorithms based on dynamic programming are
known for it [12]. Our investigations indicate, however, that the computational
demand required for solving this refined formulation is in practice substantially
higher and does not pay off the typically only small quality increase of the
obtained bound [3].

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



180 S. Pirkwieser, G.R. Raidl, and J. Puchinger

3.2 Deriving Lower Bounds

In some iterations of the volume algorithm, the obtained spanning tree is feasible
with respect to the knapsack constraint and can be directly used as a lower
bound, hence resulting in a simple Lagrangian heuristic. In order to further
improve such solutions this heuristic is strengthened by consecutively applying
a local search based on the following edge exchange move.

1. Select an edge (u, v) ∈ E \ T to be considered for inclusion (see below).
2. Determine the path P ⊆ T connecting nodes u and v in the current tree.

Including e in T would yield the cycle P ∪ {(u, v)}.
3. Identify a least profitable edge ẽ ∈ P that may be replaced by (u, v) without

violating the knapsack constraint:

ẽ = minarg
{
pe | e ∈ E ∧ w(T )− we + w(u,v) ≤ c

}
, (17)

where w(T ) =
∑

e∈T we. In case of ties, an edge with largest weight is chosen.
4. If replacing ẽ by (u, v) improves the solution, i.e. pẽ < p(u,v) ∨ (pẽ = p(u,v) ∧

wẽ > w(u,v)), perform this exchange.

For selecting edge (u, v) in step 1 we consider two possibilities:

Random selection: Randomly select an edge from E \ T .
Greedy selection: At the beginning of the local search, all edges are sorted

according to decreasing p′e = pe − λe, the reduced profits used to solve the
MST subproblem. Then, in every iteration of local search, the next less
profitable edge not active in the current solution is selected. This results in
a greedy search where every edge is considered at most once.

Since Lagrangian multipliers are supposed to be of better quality in later phases
of the optimization process, local search is only applied when the ratio of the
incumbent lower and upper bounds is larger than a certain threshold τ . Local
search stops after ρ consecutive non-improving iterations have been performed.

4 A Suitable Evolutionary Algorithm

Evolutionary algorithms (EAs) have often proven to be well suited for finding
good approximate solutions to hard network design problems. In particular for
constrained spanning tree problems, a large variety of EAs applying very different
representations and variation operators have been described, see e.g. [17] for an
overview.

Here, we apply an EA based on a direct edge-set representation for heuris-
tically solving the KCMST problem, since this encoding and its corresponding
variation operators are known to provide strong locality and heritability. Fur-
thermore, variation operators can efficiently be applied in time that depends
(almost) only linearly on the number of nodes. In fact, our EA closely follows
the description of the EA for the degree constrained minimum spanning tree
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problem in [17]. Only the initialization and variation operators are adapted to
conform with the knapsack constraint.

The general framework is steady-state, i.e. in each iteration one feasible off-
spring solution is created by means of recombination, mutation, and eventually
local improvement, and it replaces the worst solution in the population. Dupli-
cates are not allowed in the population; they are always immediately discarded.
The EA’s operators work as follows.

Initialization. To obtain a diversified initial population, a random spanning
tree construction based on Kruskal’s algorithm is used. Edges are selected
with a bias towards those with high profits. The specifically applied technique
is exactly as described in [17]. In case a generated solution is infeasible with
respect to the knapsack constraint, it is stochastically repaired by iteratively
selecting a not yet included edge at random, adding it to the tree, and
removing an edge with highest weight from the induced cycle.

Recombination. An offspring is derived from two selected parental solutions
in such a way that the new solution candidate always exclusively consists of
inherited edges: In a first step all edges contained in both parents are imme-
diately adopted. The remaining parental edges are merged into a single can-
didate list. From this list, we iteratively select edges by binary tournaments
with replacement favoring high-profit edges. Selected edges are included in
the solution if they do not introduce a cycle; otherwise, they are discarded.
The process is repeated until a complete spanning tree is obtained. Finally,
its validity with respect to the knapsack constraint is checked. An infeasi-
ble solution is repaired in the same way as during initialization, but only
considering parental edges for inclusion.

Mutation. We perform mutation by inserting a randomly selected new edge
and removing another edge from the introduced cycle. The choice of the edge
to be included is biased towards high-profit edges by utilizing a normally-
distributed rank-based selection as described in [17]. The edge to be removed
from the induced cycle is chosen at random among those edges whose removal
would retain a feasible solution.

Local Search. With a certain probability, a newly derived candidate solution
is further improved by the local search procedure described in Section 3.2.

5 Hybrid Lagrangian Evolutionary Algorithm

Preliminary tests clearly indicated that the EA cannot compete with the perfor-
mance of LD in terms of running time and solution quality. However, following
similar ideas as described in [15] for the price-collecting Steiner tree problem, we
can successfully apply the EA for finding better final solutions after performing
LD. Hereby, the EA is adapted to exploit a variety of (intermediate) results from
LD. In detail, the following steps are performed after LD has terminated and
before the EA is executed:
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1. If the profit of the best feasible solution obtained by LD corresponds to the
determined upper bound, we already have an optimal solution. No further
actions are required.

2. For the selection of edges during initialization, recombination, and mutation
of the EA, original edge profits pe are replaced by reduced profits p′e = pe−λe.
In this way, Lagrangian dual variables are exploited, and the heuristic search
emphasizes the inclusion of edges that turned out to be beneficial in LD.

3. The edge set to be considered by the EA is reduced from E to a subset E′

containing only those edges that appeared in any of the feasible solutions
encountered by LD. For this purpose, LD is extended to mark these edges.

4. The best feasible solution obtained by LD is included in the EA’s initial
population.

5. Finally, the upper bound obtained by LD is passed to the EA and exploited
by it as an additional stopping criterion: When a solution with a correspond-
ing total profit is found, it is optimal and the EA terminates.

6 Experimental Results

The described algorithms have been tested on a large variety of different problem
instances, and comparisons have been performed in particular with the previous
Lagrangian relaxation based method from [2]. This section summarizes most
important results; more details can be found in [3]. All experiments were run on
a 1.6GHz Pentium M PC with 1.25GB RAM.

As in [2], we consider instances based on random complete graphs K|V |γ and
planar graphs P|V |,|E|γ. Since we could not obtain the original instances, we
created them in the same way by our own. In addition we constructed larger
maximal planar graphs P|V |γ . Parameter γ represents the type of correlation
between profits and weights:

uncorrelated (‘u’): pe and we, e ∈ E, are independently chosen from the
integer interval [1, 100];

weakly correlated (‘w’): we is chosen as before, and pe := 
0.8we+ve�, where
ve is randomly selected from [1, 20];

strongly correlated (‘s’): we is chosen as before, and pe := 
0.9we + 10�.
For details on the methods used to construct the (maximal) planar graphs, we
refer to [2,3]. In case of complete graphs, the knapsack capacity is c = 20·|V |−20,
in case of (maximal) planar graphs c = 35 · |V |. For each combination of graph
type, graph size, and correlation, 10 instances have been considered.

We show and compare results for the Lagrangian relaxation (LR), Lagrangian
relaxation with local search (LR+LS), and associated branch-and-bound (B&B)
from [2], our Lagrangian decomposition with the simple primal heuristic (LD)
and optionally local search (LD+LS), and the combination of LD and the EA
(LD+LS+EA).
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Robust settings for strategy parameters have been determined by preliminary
tests. For the results presented here the following setup has been used.

The volume algorithm within the LD approach terminates when either the
lower and upper bounds become identical and, thus, an optimal solution has been
reached, or when the upper bound did not improve over the last 500 iterations
in case of planar graphs and 1000 iterations in case of complete graphs. For
completeness, we provide the following further details for the volume algorithm
based on its description in [14]: The target value T always is updated by T :=
0.95LB and T := 0.475(LB +UB) for planar and complete graphs, respectively,
with the exception T := 0.95T iff UB < 1.05T . Parameter f is initialized with
0.1 and multiplied by 0.67 after 20 consecutive red iterations when f > 10−8

in case of planar graph and f > 10−6 for complete graphs and is multiplied by
1.1 after a green iteration when f < 1. Factor α is initialized with 0.1 and it is
checked after every 100 and 200 iterations in case of planar and complete graphs,
respectively, if the upper bound decreased less than 1%; if so and α > 10−5 then
α := 0.85α. All these update rules are similar to those used in [15].

For the optional local search, greedy edge selection is used for complete graphs
and random edge selection for all others. The application threshold is set to
τ = 0.99. As maximum number of iterations without improvement, ρ = 200 is
used in case of uncorrelated and weakly correlated planar graphs, and ρ = 100
in all other cases.

For the EA, the population size is 100, binary tournament selection is used, and
recombination and mutation are always applied. For the biasing towards edges
with higher profits, parameters α and β (see [17]) are both set to 1.5. Local search
is performed with random edge selection for each new candidate solution with a
probability of 20% with ρ = 50 and a maximum of 5000 total iterations for graphs
having less than 8000 nodes and 10000 total iterations for larger graphs.

Results on planar and complete graphs are shown in Table 1. For LR, LR+LS,
and B&B, they are adopted from [2]. Average values based on 10 different in-
stances are printed. Columns LB show obtained lower bounds, i.e. the objective
values of the best feasible solutions. Upper bounds (UB) are expressed in terms
of the relative gap to these lower bounds: gap = (UB−LB)/LB; corresponding
standard deviations are listed in columns σgap . Columns Opt show numbers of
instances (out of 10) for which the gap is zero and, thus, optimality has been
proven. Average CPU-times for the runs are printed in columns t in seconds,
and the average numbers of iterations of the volume algorithm in columns iter.

With respect to the CPU-times listed for branch-and-bound, we remark that
they were measured on an IBM RS/6000 44P Model 270 workstation, and there-
fore, they cannot directly be compared with the times from our methods. The
maximum time limit for B&B was 2000 seconds.

Most importantly, we can see that LD obtains substantially smaller gaps than
both, LR and LR+LS. In fact, LD’s average gaps are never larger than 0.063%,
and for a large number of instances, optimality is already proven. On the re-
maining instances, enhancing LD by applying local search is beneficial; in most
cases gaps are significantly reduced, and a few more instances could be solved
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Table 1. Results of Lagrangian algorithms on planar and complete graphs

Instance

Yamada et al.[2]
LD LD+LSLR LR+LS B&B

gap gap
t[s] Opt t[s] iter LB

gap σgap Opt t[s] iter LB
gap σgap Opt[·10−5] [·10−5] [·10−5] [·10−5] [·10−5] [·10−5]

P50,127u 948.2 454.1 0.43 10 0.19 983 3558.5 62.56 89.70 3 0.30 976 3559.0 47.58 49.16 3
P100,260u 586.6 268.9 1.78 10 0.17 801 7222.9 6.76 13.17 7 0.37 817 7222.9 6.76 13.17 7
P200,560u 411.6 187.9 5.46 10 0.31 869 14896.7 3.98 5.60 6 0.55 822 14896.9 2.68 4.71 7
P400,1120u 128.3 70.4 24.44 10 0.55 880 29735.0 2.71 3.83 6 1.15 905 29735.1 2.36 3.20 6
P600,1680u 121.2 54.1 75.25 10 0.79 934 44836.2 1.11 1.17 5 1.52 854 44836.4 0.67 1.07 7
P800,2240u 296.2 124.9 466.37 10 0.79 766 59814.5 0 0 10 1.59 716 59814.5 0 0 10
P1000,2800u 166.0 73.3 592.77 10 0.99 764 74835.6 0 0 10 2.08 764 74835.6 0 0 10
P50,127w 4372.0 1243.3 0.81 10 0.15 745 2063.2 52.80 79.75 6 0.23 751 2063.6 33.57 50.59 6
P100,260w 2926.4 603.7 2.71 10 0.17 732 4167.9 9.67 16.94 7 0.36 724 4168.0 7.24 11.65 7
P200,560w 1064.0 266.3 13.11 10 0.28 730 8431.9 1.19 3.76 9 0.36 634 8432.0 0 0 10
P400,1120w 818.8 183.9 47.15 10 0.49 802 16794.3 3.58 6.42 7 0.77 721 16794.9 0 0 10
P600,1680w 824.0 167.6 371.84 8 0.65 779 25158.0 0.40 1.26 9 1.29 788 25158.0 0.40 1.26 9
P800,2240w 425.7 103.8 509.22 5 0.92 854 33540.2 0.89 1.99 8 1.76 762 33540.5 0 0 10
P50,127s 10282.5 161.0 2.84 10 0.16 815 2051.3 43.92 62.81 5 0.12 573 2052.2 0 0 10
P100,260s 19898.0 265.6 405.45 8 0.23 829 4115.1 9.72 12.54 6 0.18 641 4115.5 0 0 10
K40u 250.9 106.1 0.87 10 0.23 880 3669.3 5.50 11.59 8 0.28 884 3669.3 5.50 11.59 8
K60u 390.1 107.4 1.89 10 0.58 1164 5673.3 8.86 12.50 6 0.72 1189 5673.4 7.10 9.16 6
K80u 272.7 130.3 6.54 10 0.60 858 7672.8 0 0 10 0.69 847 7672.8 0 0 10
K100u 148.8 43.3 12.48 10 1.07 1062 9698.0 1.03 3.25 9 1.27 1055 9698.0 1.03 3.25 9
K120u 122.3 42.7 23.69 10 1.37 1012 11701.2 0 0 10 1.65 1052 11701.2 0 0 10
K140u 56.1 22.6 60.95 10 2.08 1184 13721.0 0 0 10 2.38 1162 13721.0 0 0 10
K160u 89.7 38.8 476.26 10 2.88 1260 15727.9 0 0 10 3.19 1213 15727.9 0 0 10
K180u 101.1 45.2 636.54 10 4.31 1488 17729.2 1.13 3.57 9 4.95 1470 17729.3 0.56 1.77 9
K200u 40.5 17.2 375.26 10 5.55 1502 19739.4 0 0 10 6.11 1446 19739.4 0 0 10
K20w 6186.9 991.7 0.25 10 0.11 720 618.9 17.01 53.79 9 0.12 698 618.9 17.01 53.79 9
K40w 4262.5 520.3 1.17 10 0.24 737 1320.6 7.55 23.87 9 0.19 613 1320.7 0 0 10
K60w 5700.5 529.2 6.09 10 0.51 891 2017.6 19.87 41.88 8 0.40 676 2018.0 0 0 10
K80w 4970.4 343.6 38.15 10 0.81 863 2720.4 3.68 11.63 9 0.67 732 2720.5 0 0 10
K100w 2413.3 172.9 377.61 8 1.10 879 3421.3 2.92 9.23 9 1.02 759 3421.4 0 0 10
K120w 3797.7 206.6 451.06 8 2.78 1527 4123.3 26.69 24.15 3 1.65 871 4124.3 2.43 7.68 9
K20s 22122.2 379.1 0.53 10 0.22 960 528.6 56.89 91.60 7 0.09 635 528.9 0 0 10
K30s 17032.9 322.2 99.63 10 0.31 1016 809.2 37.12 59.76 7 0.16 717 809.5 0 0 10
K40s 9492.7 137.7 226.30 6 0.34 902 1089.9 18.38 58.12 9 0.28 782 1090.1 0 0 10

to proven optimality. Overall, only 40 out of 330 instances remain, for which
LD+LS was not able to find optimal solutions and prove their optimality. As
already observed in [2], strongly correlated instances are typically harder to solve
than uncorrelated ones.

A comparison of the heuristic solutions obtained from LD+LS with solutions
from an exact approach1 further indicated that almost all of them are actually op-
timal; LD+LS just cannot prove their optimality since the upper bounds were not
tight enough. As a consequence, additionally applying the EA after LD+LS was
not very meaningful for these instances. Tests not shown here confirmed that only
in rare cases, gaps could further be reduced by the EA.

Our LD is extremely fast, needing for none of these instances more than
seven seconds. The time overhead introduced by local search is also only very
moderate, in particular since the improved heuristic solutions implied a faster
convergence of the volume algorithm.

1 We also implemented a not yet published exact branch-and-cut algorithm, which is
able to solve these instances to proven optimality.
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In order to investigate the usefulness of the proposed LD+LS+EA hybrid,
we now turn to the larger maximal planar graphs, for which Table 2 presents
results. For the EA, we additionally list the average number of EA iterations
iterEA, the relative amount of edges discarded after performing LD red = (|E|−
|E′|)/|E| ·100%, and the number of optimal solutions OptEA, among Opt, found
by the EA.

Again, the solutions obtained by LD are already quite good and gaps are in
general small. The inclusion of local search clearly increases the number of opti-
mal solutions found, leaving only 21 out of all 180 instances for which optimality
is not yet proven. The hybrid approach (LD+LS+EA) works almost perfectly:
Gaps are reduced to zero, and thus proven optimal solutions are achieved for all
but three instances. The values in column OptEA document that the EA plays a
significant role in finally closing gaps. The three remaining instances are solved
with gaps less than 0.00003%.

In general, results of Tables 1 and 2 indicate that it is harder to close the
optimality gap for smaller than for larger instances. One reason seems to be
that with increasing graph size, more edges have the same profit and weight
values. Tests on other types of instances, with differently determined profits and
weights, are therefore interesting future work.

7 Conclusions

We presented a Lagrangian decomposition approach for the NP-hard KCMST
problem to derive upper bounds as well as heuristic solutions. Experimental re-
sults on large graphs revealed that the upper bounds are extremely tight, in
fact most of the time even optimal. Heuristic solutions can be significantly im-
proved by applying a local search, and many instances can be solved to provable
optimality already in this way.

For the remaining, larger instances, a sequential combination of LD with an
evolutionary algorithm has been described. The EA makes use of the edge-set
encoding and corresponding problem-specific operators and exploits results from
LD in several ways. In particular, the graph is shrunk by only considering edges
also appearing in heuristic solutions of LD, Lagrangian dual variables are ex-
ploited by using final reduced costs for biasing the selection of edges in the EA’s
operators, and the best solution obtained from LD is provided to the EA as seed
in the initial population.

Computational results document the effectiveness of the hybrid approach. The
EA is able to close the gap and provide proven optimal solutions in almost all of
the remaining difficult cases. Hereby, the increase in running time one has to pay
is only moderate.

The logical next step we want to pursue is to enhance the branch-and-bound
method from [2] by also utilizing the more effective LD or even the hybrid LD/EA
instead of the simple Lagrangian relaxation.

In general, we believe that such combinations of Lagrangian relaxation and
metaheuristics like evolutionary algorithms are highly promising for many com-
binatorial optimization tasks. Future work therefore includes the consideration
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of further problems, but also the closer investigation of other forms of collabora-
tion between Lagrangian relaxation based methods and metaheuristics, including
intertwined and parallel models.
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Abstract. In this paper we study a complex real-world workforce scheduling 
problem. We propose a method of splitting the problem into smaller parts and 
solving each part using exhaustive search. These smaller parts comprise a 
combination of choosing a method to select a task to be scheduled and a method 
to allocate resources, including time, to the selected task. We use reduced 
Variable Neighbourhood Search (rVNS) and hyperheuristic approaches to 
decide which sub problems to tackle. The resulting methods are compared to 
local search and Genetic Algorithm approaches. Parallelisation is used to 
perform nearly one CPU-year of experiments. The results show that the new 
methods can produce results fitter than the Genetic Algorithm in less time and 
that they are far superior to any of their component techniques. The method 
used to split up the problem is generalisable and could be applied to a wide 
range of optimisation problems. 

1   Introduction 

In collaboration with an industrial partner we have studied a workforce scheduling 
problem which is a resource constrained scheduling problem similar to but more 
complex than many other well-studied scheduling problems such as the Resource 
Constrained Project Scheduling Problem (RCPSP) [1] and job shop scheduling 
problem [2]. The problem is based on our work with @Road Ltd. which develops 
scheduling solutions for very large, complex mobile workforce scheduling problems 
in a variety of industries. Our workforce scheduling problem is concerned with 
assigning people and other resources to geographically dispersed tasks while 
respecting time window constraints and skill requirements.  

The workforce scheduling problem that we consider consists of four main 
components: Tasks, Resources, Skills and Locations. Unlike many RCPSP problems, 
the tasks have locations and a priority value (to indicate relative importance). 
Resources are engineers and large pieces of equipment. They are mobile, travelling at 
a variety of speeds to geographically dispersed tasks. Tasks and resources have time 
windows with different associated costs (to consider, for example, inconvenience to 
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customers at certain times, the cost of overtime, etc.). Tasks require a specified 
amount of specified skills, and resources possess one or more of these skills at 
different competencies which affects the amount of time required. A major source of 
complexity of our problem comes from the fact that a task’s duration is unknown until 
resources are assigned to it. In this paper, the fitness of a schedule is given by one of 
the single weighted objective functions used in [3], f = SP - 4SC - 2TT, where SP is 
the sum of the priority of scheduled tasks, SC is the sum of the time window costs in 
the schedule (both resource and task) and TT is the total amount of travel time. This 
objective is to maximise the total priority of tasks scheduled while minimising travel 
time and cost. [3] describes the problem in more detail and uses a Genetic Algorithm 
to solve it. In this paper we will compare the Genetic Algorithm method with a new 
reduced Variable Neighbourhood Search and hyperheuristic methods. 

We propose a method to break down this “messy” problem by splitting it into smaller 
parts and solving each part using exact enumerative approaches. Hence each part 
consists of finding the optimal member of a local search neighbourhood. We then 
design ways to decide which part to tackle at each stage in the solution process. These 
smaller parts are the combination of a method to select a task and a method to select 
resources for the task. We will take these smaller parts and use reduced Variable 
Neighbourhood Search and hyperheuristics to decide the order in which to solve them. 

This paper is structured as follows: we present related work in section 2 and 
propose reduced Variable Neighbourhood Search and hyperheuristic approaches in 
section 3. In section 4 we empirically investigate the new techniques and compare 
them to a genetic algorithm in terms of solution quality and computational time. We 
present conclusions in section 5. 

2   Related Work 

The RCPSP [1] involves a set of tasks which have to be scheduled under resource and 
precedence constraints. Precedence constraints require that a task may not start until all 
its preceding tasks have finished. Resource constraints require specified amounts of finite 
resources to be available when the task is scheduled. Scheduling an RCPSP involves 
assigning start times to each of the tasks. The RCPSP is a generalisation of many 
scheduling problems including job-shop, open-shop and flow-shop scheduling problems. 
The RCPSP has no notion of variable time dependant on skill or location of tasks and 
resources. The time line is also discrete and assumes resources are always available. 

The Multimode Resource Constrained Resource Scheduling Problem (MRCPSP) 
extends the RCPSP [4]. In the MRCPSP, there is the option of having non-renewable 
resources and resources that are only available during certain periods. In addition, a 
task maybe executed in one of several execution modes. Each execution mode has 
different resource requirements and different task durations. Usually the number of 
these modes is small and hence exact methods can be used. In the workforce 
scheduling problem considered in this paper, we have a very large number of 
execution modes (as the task duration depends on the resource competency and the 
task skill requirement which are both real values). [5] uses a genetic algorithm as a 
solution to problems where using an exact method is intractable. [6] surveys heuristic 
solutions to the RCPSP and MRCPSP. 
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Solution methods such as Genetic Algorithms (GAs) were introduced by 
Bremermann [7] and the seminal work done by Holland [8]. Since then they have 
been developed extensively to tackle problems including the travelling salesman 
problem [9], bin packing problems [10] and scheduling problems [11]. A Genetic 
Algorithm tries to evolve a population into fitter ones by a process analogous to 
evolution in nature. Our previous work [3] compares a multi-objective genetic 
algorithm to a single weight objective genetic algorithm to study the trade-off 
between diversity and solution quality. The genetic algorithm is used to solve the 
dynamic workforce scheduling problem studied in this paper. 

Variable Neighbourhood search (VNS) is a relatively new search technique and the 
seminal work was done by Mladenović and Hansen [12]. VNS is based on the idea of 
systematically changing the neighbourhood of a local search algorithm. Variable 
Neighbourhood Search enhances local search using a variety of neighbourhoods to 
“shake” the search into a new position after it reaches a local optimum. Several 
variants of VNS exist as extensions to the VNS framework [13]. 

Reduced Variable Neighbourhood search (rVNS) [13] is an attempt to improve the 
speed of variable neighbourhood search (with the possibility of a worse solution). 
Usually, the most time consuming part of VNS is the local search. rVNS picks 
solutions randomly from neighbourhoods which provide progressively larger moves. 
rVNS is targeted at large problems where computational time is more important than 
the quality of the result. In combinatorial optimisation problems, local search moves 
like “swap two elements” are frequently used, and [14] for RCPSP as well as others 
such as [15], apply VNS by having the neighbourhoods make an increasing number of 
consecutive local search moves. [16] however defines only two neighbourhoods for 
VNS applied to the Job Shop Scheduling Problem, a swap move and an insert move, 
which proves to be effective.  

VNS can be seen as a form of hyperheuristic where the neighbourhoods and local 
search are low level heuristics. The term “hyperheuristic” was introduced in [17]. 
Hyperheuristics rely on low level heuristics and objective measures which are specific 
to the problem. The hyperheuristic uses feedback from the low level heuristics (CPU 
time taken, change in fitness, etc.) and determines which low level heuristics to use at 
each decision point. Earlier examples of hyperheuristics include [18] where a genetic 
algorithm evolves a chromosome which determined how jobs were scheduled in open 
shop scheduling. A variety of hyperheuristics have been developed including a 
learning approach based on the “choice function” [17], tabu search [19], simulated 
annealing [20] and Genetic Algorithms [21]. 

3   Heuristic Approaches 

Our proposed framework splits the problem into (1) selecting a task to be scheduled 
and (2) selecting potential resources for that task. A task is randomly chosen from the 
top two tasks which we have not tried to schedule ranked by the task order, to make 
the search stochastic, to ensure that running it multiple times will produce different 
results. We have implemented 8 task selection methods given in table 1. Note that 
some of our task orders are deliberately counterintuitive to give us a basis for 
comparison. 

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



 Exact/Heuristic Hybrids Using rVNS and Hyperheuristics for Workforce Scheduling 191 

Table 1. Task sorting methods 

Method Description 
Random Tasks are ordered at random. 
PriorityDesc Tasks are ordered by their priority in descending order 
PriorityAsc Tasks are ordered by their priority in ascending order 
PrecedenceAsc Tasks are ordered by their number of precedences ascending  
PrecedenceDesc Tasks are ordered by their number of precedences descending  
PriOverReq 

  
Tasks are ordered by their estimated priority per hour assuming 
the task will take as long as the total skill requirement 

PriOverMaxReq 
  

Tasks are ordered by their estimated priority per hour assuming 
the task will take as long as the maximum skill requirement 

PriOverAvgReq 
  

Tasks are ordered by their estimated priority per hour assuming 
the task will take as long as the average skill requirement 

PriorityDesc, PriOverReq, PriOverMaxReq and PriOverAvgReq are attempts to 
identify the tasks which will give us the most reward and schedule them first. They 
estimate the task duration differently and use this estimate to calculate priority hour. 
PrecedenceDesc attempts to schedule those tasks with the largest number of 
succeeding tasks first. PrecedenceAsc, PriorityAsc and Random give us some 
indication of the effect of task orders since intuition would suggest that they should 
give poor results. 
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200 

300 
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Fig. 1. Resource Selector. The dotted subset of resources possessing the required skill is chosen 
by a Resource Selector. The assignment (R2, R1) is chosen as the best insertion. 

We then define Resource Selectors which select a set of potential resources for 
each skill required by the selected task. The Resource Selectors first sort the resources 
by their competencies at the skill required and then select a subset of them. This could 
be, for example, the top five or the top six to ten etc. The subsets of resources are then 
enumerated and exhaustive search used to find the insertion which will yield the 
lowest time window and travel penalties subject to precedence constraints. Figure 1 
illustrates this. 

 

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



192 S. Remde et al. 

 

Fig. 2. Resource selection “chains” for the rVNS 

 

Fig. 3. Pseudo code for our rVNS method 

The neighborhoods of our rVNS insert tasks selected by a task order using a given 
resource selector. If an insertion is not possible, because of resource or task 
constraints, we try the next resource selector and so on. We consider several 
sequences of resource selection neighborhoods, or “chains”, as shown in figure 2. 
These neighborhoods show a progression of an increasing range of resources used and 

 k is the index of the resource selector in use 
(N1, N2, … 

maxkN ) is our chain of resource selectors 

Sort tasks using the chosen task order 
k:=1 
while (k<kmax) 
 for each Unscheduled Task T 
  Select Sets of Resources Using Nk for Task T 
  Exhaustively Search the selected sets of resources  

to find an optimal insertion I 
  Insert task T into the schedule using I 
 next 
 if some tasks were inserted then 
   k:=1  
 else 

 k:=k+1 
 end if 
end while
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smaller sets. Figure 3 shows the pseudo code for our rVNS method. Allowing search 
to restart at the start of the chain allows the search to retry insertions that may have 
failed before because of resource or task constraints. If s is the maximum number of 
skills and n is the number of tasks, then the algorithm has time complexity O(nk|Nk|

s) 
for each chain. With the 16 resource selection chains and the 8 task orders we have 
defined, we have 128 different rVNS methods. 

Our first hyperheuristic, HyperRandom, selects at random a Low Level Heuristic 
(i.e. a (task order, resource selector) pair) to use at each iteration and applies it if its 
application will result in a positive improvement. This continues until no 
improvement has been found for a certain number of iterations. The second, 
HyperGreedy, evaluates all the Low Level Heuristics at each iteration and applies the 
best if it makes an improvement. This continues until no improvement is found. The 
low level heuristics are the combination of a task selector and a resource selector. 

The genetic algorithm we will use is that of [3]. The chromosome represents an 
order of tasks to be scheduled by a serial scheduler. The initial population is generated 
randomly and the task order is evolved. The way in which the tasks are inserted into 
the schedule is a fast naïve approach as schedule must be generated many times per 
generation. The serial scheduler takes the next task from the chromosome and 
allocates resources to it greedily skill by skill. A resource is selected by finding the 
resource which has the greatest amount of available time in common with the task’s 
time windows and any other resources already selected. After each skill has been 
allocated a resource, it is inserted into the schedule as early as possible. We use a 
population size of 50, mutation rate of 1%, and a crossover rate of 25% using 
Uniform Crossover based on out previous experience [3]. The GA is run for 100 
generations (or for a maximum of 2.5 hours) and the result is the fittest individual in 
the final population. 

4   Computational Experiments 

To compare the methods for solving the problem, we use each method (one Genetic 
Algorithm, 128 rVNS and two hyperheuristics) on five different problem instances. 
The five problem instances require the scheduling of 400 tasks using 100 resources 
over one day using five different skills. Tasks require between one and three skills 
and resources possess between one and five skills. The problems are made to reflect 
realistic problems @Road Ltd. have identified and are generated using the problem 
generator used in [3].  

Each method is used for five runs of the five instances and an average taken of the 
25 results. To ensure fairness, each method is also run for a 2.5 hour “long-run” 
where the 25 results are repeatedly generated and the best average over all there 
repeated runs is reported. As these experiments require nearly a CPU year to complete 
(five runs of five instances using 131 different methods lasting 2.5 hours each = 
8187.5 CPU hours) they were run in parallel on 60 identical 3.0 GHz Pentium 4 
machines. Implementation was in C# .NET under Windows XP. 

Figure 4 shows the results of the 2.5 hour “long run” for each rVNS approach. 
Results for a single run of each approach are similar but 1-4% worse on average. The 
intuitively “bad” task orders, PriorityAsc and Random are clearly shown to be worse 
than the intuitively reasonable orders such as PriorityDesc. Measure based on  
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Fig. 4. Heat graph of the performance of rVNS methods for 2.5 hour “long run”. Black = 4472, 
White =26525. 

 

Fig. 4a. Heat graph of the performance of selected rVNS methods for 2.5 hour “long run”. 
Black = 25398, White =26525. 
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Fig. 5. Average CPU time taken by each chain used in the rVNS methods 

decreasing priority or priority per hour (PriorityDesc, PriOverReq, PriOverAvgReq, 
PriOverMaxReq) are superior to other measures. Figure 4a compares the best 
approaches in detail. Chain 12 produces the best results for all task orders. It is clear 
to see the correlation between results with common chains or task orders. Chain 4 
demonstrates that trying to estimate priority per hour is superior to PriorityDesc. This 
is probably because with a limited amount of free time in the schedule, using tasks 
that have lower priority but can be completed in a shorter time is more beneficial. 
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Figure 5 compares the CPU time for a single run of rVNS using each chain. It is 
clear that the approach would scale to very large problems using small resource 
selection sets such as for chains 1, 5, 6, 8, 11 and 13. Moreover, it appears from figure 
4 that little solution quality is lost when covering the resources with small subsets 
rather than larger ones as in chain 4, but the CPU times are significantly reduced. 
Chain 12 yields the best results of the chains which take reasonable amounts of CPU 
time, and clearly outperform chain 2 and chain 7 which do not consider the whole set 
of resources. It seems that resources of poor competence must be considered to get the 
best possible results. 

Table 2 shows the best result from the rVNS (Chain 12, Task Order PriOverReq) 
compared with GA and the hyperheuristic methods. They quite clearly show that 
HyperGreedy provided the fittest results on average while using more CPU time. The 
GA provided the worst result and in the slowest time. This may result from its 
insertion heuristic, however implementing a better one would make it even slower. 
The rVNS is the fastest method we have tested and provides results nearly 20% better 
than the GA in less than 1/350 of the CPU time required. Exactly solving small sub 
problems appears very effective in this case.  

Table 2. GA, rVNS and Hyper-Heuristic Results for one run and long run 

Method 
Fitness 

(single run average) 
CPU 

Time (s) 
Fitness  

(after 2.5 hours) 
GA 21401.3 9000.0 21401.3 
rVNS (Best) 25662.5 25.1 26215.1 
HyperRandom 24525.4 78.3 25645.4 
HyperGreedy 26523.6 419.2 27103.1 

HyperRandom performs poorly compared to the best rVNS method. rVNS task 
selectors and resource selectors are sensible guesses which significantly improve on 
the random approach of HyperRandom. The resource selectors of the rVNS tend to 
select resources which are of similar competence, so that a high competence resource 
is not combined with a low-competence resource (which might tie up the time of a 
high-competence resource). 

The HyperRandom, and the HyperGreedy heuristics try significant numbers of bad 
low level heuristics which make local improvements which in the long run are far 
from optimal. In the case of the HyperGreedy method, the bad low level heuristics are 
evaluated every iteration which wastes CPU time. Analysis of the low level heuristics 
used in the HyperGreedy method was performed and show that 19 (26.4%) of the low 
level heuristics were never used and 56 (77.7%) of the low level heuristics were used 
less than one percent of the time.  Figure 6 analyses the low level heuristics (LLHs) 
used. It shows the top 20 LLHs used together with when they are used in schedule 
generation. First third, middle third and last third show the usage at different stages in 
the scheduling process – from when the schedule is empty and unconstrained to when 
the schedule is almost full and inserting a task is more difficult. From these results it 
is clear that different LLHs contribute at different stages of the solution process, and 
that many different LLHs provide a contribution. For example, LLH 32 is more 
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Fig. 6. Usage of low level heuristics throughout the HyperGreedy search 

effective at the start of scheduling, LLH 12 is more effective in the middle and LLH 
64 is more effective at the end. Without access to a large number of LLHs it seems 
that solution quality would be much reduced. 

5   Conclusions 

In this paper we have compared a large number (128) of reduced Variable 
Neighbourhood Search (rVNS) approaches to hyperheuristics and Genetic Algorithm 
approaches for workforce scheduling problem. We have demonstrated the 
effectiveness of heuristic/exact hybrids which find optimal subproblem solutions 
using an enumerative approach. Our rVNS method can produce good results to large 
problems in low CPU time. Our hyperheuristics produce even better results using 
more CPU time and we showed that the hyperheuristic uses a range of low level 
heuristics throughout the search process.  

The hyperheuristics we used are simple and learning could potentially decrease 
CPU time and increase fitness. In future work we intend to implement learning 
mechanisms. We have seen from the analysis that many low level heuristics were 
never used and some used mainly at the beginning, middle or end. Learning the low 
level heuristics behaviour could potentially lead to better solutions in less time.  
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Abstract. This paper investigates the effect of the cost matrix standard
deviation of Travelling Salesman Problem (TSP) instances on the per-
formance of a class of combinatorial optimisation heuristics. Ant Colony
Optimisation (ACO) is the class of heuristic investigated. Results demon-
strate that for a given instance size, an increase in the standard deviation
of the cost matrix of instances results in an increase in the difficulty of
the instances. This implies that for ACO, it is insufficient to report re-
sults on problems classified only by problem size, as has been commonly
done in most ACO research to date. Some description of the cost matrix
distribution is also required when attempting to explain and predict the
performance of these algorithms on the TSP.

1 Introduction and Motivation

Ant colony optimisation (ACO) algorithms [4] are a relatively new class of sto-
chastic metaheuristic for typical Operations Research (OR) problems of com-
binatorial optimisation. To date, research has yielded important insights into
ACO behaviour and its relation to other heuristics. However, there has been no
rigorous study of the relationship between ACO algorithms and the difficulty of
problem instances. Specifically, in ACO research to date, it has been mostly as-
sumed that problem instance size is the main indicator of difficulty. Cheeseman
et al [2] have shown that there is a relationship between the standard deviation
of the cost matrix of a Travelling Salesperson Problem (TSP) instance and the
difficulty of the problem for an exact algorithm.

In this paper we show that varying the standard deviation of a TSP instance
cost matrix has a major impact on the difficulty of the problem instance for
ACO algorithms. Consequently, we strongly recommend to take this cost matrix
measure into account when evaluating and comparing ACO algorithms.

Our study focuses on Ant Colony System (ACS) [3] and Max-Min Ant Sys-
tem (MMAS) [9] since the field frequently cites these as its best performing
algorithms. The study uses the TSP for the usual reasons of it being a popular
abstraction of discrete combinatorial optimisation problems. Furthermore, the
TSP has been instrumental in the development of ACO algorithms.

In our investigation we use established Design of Experiment (DOE) [8] tech-
niques and statistical tools to explore data and test hypotheses. The designs and
analyses from this paper could be applied to other stochastic heuristics for the
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TSP. Problems are generated with a customised version of the freely available
problem generator used in the DIMACS TSP Challenge1. The algorithms inves-
tigated are a Java port of the original C code that accompanies the book by
Stützle and Dorigo [4]2. This Java port has been informally verified to produce
the same behaviour as the original.

The next Section gives a brief background on the ACO algorithms, ACS and
MMAS. Section 3 describes the research methodology. Section 4 describes the
results from the experiments. Related work is covered in Section 5. The paper
ends with its conclusions and directions for future work.

2 Background

Ant Colony Optimisation algorithms are discrete combinatorial optimisation
heuristics inspired by the foraging activities of natural ants. When applied to the
TSP, the problem is represented by a graph of nodes and edges (representing the
costs of visiting nodes). The objective is to minimise the cost of visiting all nodes
in the graph once and only once. This abstraction has application in problems
of traffic routing and manufacture among others.

Broadly, the ACO algorithms work by placing a set of artificial ants on the
TSP nodes. The ants build TSP solutions by moving between nodes along the
graph edges. These movements are probabilistic and are influenced both by a
heuristic function and the levels of a real-valued marker called a pheromone.
Their movement decisions also favour nodes that are part of a candidate list,
a list of the least costly cities from a given node. The iterated activities of
artificial ants lead to some combinations of edges becoming more reinforced
with pheromone than others. Eventually the ants converge on a solution.

It is common practice to hybridise ACO algorithms with local search proce-
dures. This study focuses on ACS and MMAS as constructive heuristics and so
omits any such procedure. Adding one of a potentially infinite number of local
search variants confounds any effects on the ant algorithm with effects on the
local search component. We see this confounding in much of the ACO literature
where effects that may be due to an interaction with the local search procedure
are attributed to an interaction with the ACO algorithm. The interested reader
is referred to the most recent review text [4] for further information on ACO
algorithms.

In common with many heuristics, ACO algorithms have a large number of
tuning parameters that can have a dramatic effect on algorithm behaviour. The
parameters used in this paper are listed in Table 1.

We chose these values because they are commonly listed in the field’s main
book [4] and literature. We stress that we by no means support such a ‘folk’
approach to parameter selection in general. Our ultimate goal is to select para-
meter values methodically using RSM techniques. This study is a prerequisite
step towards that goal. In this paper’s context, selecting parameter values as we
1 http://www.research.att.com/∼dsj/chtsp/
2 http://iridia.ulb.ac.be/∼mdorigo/ACO/aco-code/public-software.html
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Table 1. Parameter settings for the ACS and MMAS algorithms. Value are taken from
the original publications [4,9]. Please refer to these for a detailed explanation of the
parameters.

Parameter Symbol ACS MMAS

Ants m 10 25

Pheromone
emphasis

α 1 1

Heuristic em-
phasis

β 2 2

Candidate
List length

15 20

Exploration
threshold

q0 0.9 N/A

Pheromone
decay

ρglobal 0.1 0.8

Pheromone
decay

ρlocal 0.1 N/A

Ant activity Sequential Sequential

have done shows that we did not contrive a result by searching for a unique set
of values that would demonstrate our desired effect. Furthermore, it makes our
conclusions with freely available code applicable to all research that has used
these parameter values without justification. For the purposes of this paper,
demonstrating an effect of cost matrix standard deviation on performance with
even one parameter set is sufficient to merit this factor’s consideration in all
related studies.

3 Method

This section describes the general experiment design issues relevant to this pa-
per. Others have covered these in detail [7] for heuristics in general. Further
information on Design of Experiments is available in the literature [8].

3.1 Stopping Criterion

The choice of stopping criterion for an experiment run is difficult when algo-
rithms can continue to run and improve indefinitely. CPU time is certainly not
a scientifically reproducible metric and some independent metric such as a com-
binatorial count of an algorithm operation is often used.

A problem with this approach is that our choice of combinatorial count can
bias our results. Should we stop after 1000 iterations or 1001? We mitigate this
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concern by taking 10 evenly spaced measurements over 5000 iterations of the
algorithms and separately analysing the data at all 10 measurements. Note that
a more formal detection of possible differences introduced by different stopping
criteria would have required a different analysis.

3.2 Response

We measure the percentage relative error from the known optimum solution.
Other solution quality measures have been proposed, notably the adjusted dif-
ferential approximation [11]. We did not investigate such measures here. Con-
corde [1] was used to calculate the optima of the generated instances. To make
the data amenable to statistical analysis, a transformation was required. The
response was transformed using either a log10 or inverse square root transforma-
tion as recommended by the Box-Cox plot technique.

3.3 Outliers

An outlier is a data value that is either unusually large or unusually small relative
to the rest of the data. Outliers are important because their presence can distort
data and render statistical analyses inaccurate. There are several approaches to
dealing with outliers. This research used the approach of deleting outliers from an
analysis until the analysis passed the usual diagnostics mentioned in Section 4.1.

3.4 Experiment Design

This study uses a two-stage nested (or hierarchical) design. Consider this
analogy.

A company receives stock from several suppliers. They test the quality of this
stock by taking 10 samples from each supplier’s batch. They wish to determine
whether there is a significant overall difference between supplier quality and
whether there is a significant quality difference in samples within a supplier’s
batch. A full factorial design of the supplier and sample factors is inappropriate
because samples are unique to their supplier.

A similar situation arises in this research. An algorithm encounters TSP in-
stances with different levels of standard deviation of cost matrix. We want to
determine whether there is a significant overall difference in algorithm solution
quality for different levels of standard deviation. We also want to determine
whether there is a significant difference in algorithm quality between instances
that have the same standard deviation. Figure 1 illustrates the two-stage nested
design schematically.

The standard deviation of the generated instance is the parent factor and
the individual instance number is the nested factor. Therefore, an individual
treatment consists of running the algorithm on a particular instance generated
with a particular standard deviation. This design applies to an instance of a
given size and therefore cannot capture possible interactions between instance
size and instance standard deviation. Capturing such interactions would require
a more complicated crossed nested design. This research uses the simpler design
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Fig. 1. Schematic for the Two-Stage Nested Design with r replicates. (adapted from
[8]). Note the instance numbering to emphasise the uniqueness of instances within a
given level of standard deviaiton.

to demonstrate that standard deviation is important for a given size. Interactions
are captured in the designs mentioned in Section 7.

Because of the stochastic nature of ACS and MMAS, we replicated each treat-
ment run 10 times with a different random seed. Available computational re-
sources necessitated running experiments across a variety of similar machines.
Runs were executed in a randomised order across these machines to counteract
any uncontrollable nuisance factors.

3.5 Instances

Problem instances were created using a modification of the portmgen generator
from the DIMACS TSP challenge. The original portmgen created a cost matrix
by choosing costs uniformly randomly within a certain range. We first ported
this generator into Java and verified that its behaviour was unchanged. We then
adjusted the generator so that edge costs could be drawn from any distribution.
In particular, we followed Cheeseman et al ’s [2] approach and drew edge costs
from a Log-Normal distribution. Although Cheeseman et al did not state their
motivation for using such a distribution, a plot of the relative frequencies of
the normalised edge costs of instances from a popular online benchmark library,
TSPLIB, shows that the majority have a Log-Normal shape (Figure 2).

An appropriate choice of inputs results in a Log-Normal distribution with a
desired mean and standard deviation. We created instances of a given size with
a mean fixed at 100. Standard deviation was varied across 5 levels: 10, 30, 50,
70 and 100. Figure 3 shows relative frequencies of the normalised cost matrices
of several generated instances.

Three problem sizes; 300, 500 and 700 were tested. The same instances were
used for all algorithms.
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Fig. 2. Cost matrix distribution of two TSPLIB instances
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Fig. 3. Relative frequencies of normalised edge costs for several instances of the same
size and same mean cost. Instances are distinguished by their standard deviation.

4 Results and Analysis

4.1 Analysis Procedure

The two-stage nested designs were analysed with the General Linear Model.
Standard deviation was treated as a fixed factor since we explicitly chose its
levels and instance was treated as a random factor. The usual diagnostic tools
were used to verify that the model was correct and that its assumptions had not
been violated—model fit, normality, constant variance, time-dependent effects,
and leverage. Further details on these analyses and diagnostics are available in
many textbooks [8].

4.2 Results

Figure 4 illustrates the results. In all cases, the effect of Standard Deviation on
solution quality was deemed statistically significant at the p < 0.01 level. The
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effect of instance was also deemed statistically significant. However, an examina-
tion of the plots that follow shows that only Standard Deviation has a practically
significant effect. In each of these box-plots, the horizontal axis shows the stan-
dard deviation of the instances’ cost matrices at five levels. This is repeated along
the horizontal axis at three of the ten measurement points used. The vertical
axis shows the solution quality response in its original scale. There is a separate
plot for each algorithm and each problem size. Outliers have been included in
the plots.

At each measurement point, there was a slight improvement in the response.
Conclusions from the data were the same at all measurement points. In all cases,
problem instances with a lower standard deviation had a significantly lower
response value than instances with a higher standard deviation. This difference
was greatest between instances with a standard deviation of 10 and those with
a standard deviation of 30.

In all cases, there was a higher variability in the response between instances
with a higher standard deviation.

5 Related Work

There has been some related work on problem difficulty for exact and heuristic
algorithms. Cheeseman et al [2] investigated the effect of cost matrix standard
deviation on the difficulty of Travelling Salesperson Problems for an exact algo-
rithm. Three problem sizes of 16, 32 and 48 were investigated. For each problem
size, many instances were generated such that each instance had the same mean
cost but a varying standard deviation of cost. This varying standard deviation
followed a Log-Normal distribution. The computational effort for an exact al-
gorithm to solve each of these instances was measured and plotted against the
standard deviation of cost matrix. This paper differs from Cheeseman et al in
that it uses larger problem sizes and a heuristic algorithm rather than exact al-
gorithm. Furthermore, its conclusions are reinforced with a DOE approach and
statistical analyses.

Fischer et al [5] investigated the influence of Euclidean TSP structure on the
performance of two algorithms, one exact and one approximate. The former was
branch-and-cut [1] and the latter was the iterated Lin-Kernighan algorithm [6].
In particular, the TSP structural characteristic investigated was the distribu-
tion of cities in Euclidean space. The authors varied this distribution by taking
a structured problem instance and applying an increasing perturbation to the
city distribution until the instance resembled a randomly distributed problem.
There were two perturbation operators. A reduction operator removed between
1% to 75% of the cities in the original instance. A shake operator offset cities
from their original location. Using 16 original instances, 100 perturbed instances
were created for each of 8 levels of the perturbation factor. Performance on per-
turbed instances was compared to 100 instances created by uniformly randomly
distributing cities in a square. Predictably, increased perturbation lead to in-
creased solution times that were closer to the times for a completely random
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Fig. 4. Boxplots of results for both algorithms and all problem sizes
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instance of the same size. It was therefore concluded that random Euclidean
TSP instances are relatively hard to solve compared to structured instances.
An unfortunate flaw in the experiment design was that the reduction opera-
tor confounded changed problem structure with a reduction in problem size, a
known factor in problem difficulty. This paper fixes problem size and cost ma-
trix mean and controls cost matrix standard deviation, thus avoiding any such
confounding.

Most recently, Van Hemert [10] evolved problem instances of a fixed size
that were difficult to solve for two heuristics: Chained Lin-Kernighan and Lin
Kernighan with Cluster Compensation. TSP instances of size 100 were created
by uniform randomly selecting 100 coordinates from a 400x400 grid. This seems
to be a similar generation approach to the portgen generator from the DIMACS
TSP challenge. An initial population of such instances was evolved for each of the
algorithms where higher fitness was assigned to instances that required a greater
effort to solve. This effort was a combinatorial count of the algorithms’ most time-
consuming procedure. Van Hemert then analysed the evolved instances using
several interesting metrics. His aim was to determine whether the evolutionary
procedure made the instances more difficult to solve and whether that difficulty
was specific to the algorithm. To verify whether difficult properties were shared
between algorithms, each algorithm was run on the other algorithm’s evolved
problem set. A set evolved for one algorithm was less difficult for the other al-
gorithm. However, the alternative evolved set still required more effort than the
random set indicating that some difficult instance properties were shared by both
evolved problem sets. Our approach began with a specific hypothesis about a
single problem characteristic and its effect on problem hardness. Van Hemert’s,
by contrast, evolved hard instances and then attempted to infer, post-hoc, which
characteristics might be responsible for that hardness. If the researcher’s aim is
to stress test a heuristic, then we believe Van Hemert’s approach is more ap-
propriate. The approach presented here is appropriate when isolating a specific
problem characteristic that may affect problem hardness.

To our knowledge, these are the first rigorous experiments on the hardness of
problem instances for ACO heuristics.

6 Conclusions

Our conclusions from the aforementioned results are as follows.
For the Stützle and Dorigo implementations of ACS and MMAS, applied to

TSP instances generated with log-normally distributed edge costs such that all
instances have a fixed cost matrix mean of 100 and a cost matrix standard
deviation varying from 10 to 100:

1. an increase in cost matrix standard deviation leads to a statistically and
practically significant increase in the difficulty of the problem instances for
these algorithms.

2. there is no practically significant difference in difficulty between instances that
have the same size, cost matrix mean and cost matrix standard deviation.
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3. there is no practically significant difference between the difficulty measured
after 1000 algorithm iterations and 5000 algorithm iterations.

These results are important for the ACO community for the following reasons:

– They demonstrate in a rigorous, designed experiment fashion, that quality
of solution of an ACO TSP algorithm is affected by the standard deviation
of the cost matrix.

– They demonstrate that cost matrix standard deviation must be considered
as a factor when building predictive models of ACO TSP algorithm perfor-
mance.

– They clearly show that performance analysis papers using ACO TSP al-
gorithms must report instance cost matrix standard deviation as well as
instance size since two instances with the same size can differ significantly
in difficulty.

– They motivate an improvement in benchmarks libraries so that they provide
a wider crossing of both instance size and instance cost matrix standard
deviation. Plots of instances in the TSPLIB show that generated instances
generally have the same shaped distribution of edge costs. However, real
instances often have different shaped distributions

For completeness and for clarity, we state that this research does not examine
the following issues.

– We are not examining clustered problem instances or grid problem instances.
These are other common forms of TSP in which nodes appear in clusters and
in a very structured grid pattern respectively.

– Algorithm performance is not being examined since no claim was made about
the suitability of the parameter values used. Rather, we aim to demonstrate
an effect for standard deviation and so argue that its should be included as
a factor in experiments that do examine algorithm performance.

– We make no direct comparison between algorithms since algorithms were
not tuned methodically. That is, we are not entitled to say that ACS did
better than MMAS on, say, instance X with a standard deviation of Y.

– We make no direct comparison of the response values for different sized
instances. Clearly, 3000 iterations explores a bigger fraction of the search
space for 300-city problems than for 500 city problems. Such a comparison
could be made if it was clear how to scale iterations with problem size. Such
scaling is an open question.

7 Future Work

There are several avenues of future work leading from this paper.
The same analysis is worthwhile for other popular ACO algorithms. The code

provided by Stützle and Dorigo also has implementations of Best-Worst Ant
System, Ant System, Rank-Based Ant System and Elitist Ant System. We are
conducting these analyses presently.
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One of the main motivations of this paper’s research was to investigate whether
inclusion of cost matrix standard deviation as a factor in experiment designs im-
proves the predictive capabilities of Response Surface Models. Recall that we have
used fixed algorithm parameter settings from the literature. Screening experiments
prior to Response Surface design would establish which if any of these parameters
interacts with cost matrix standard deviation to affect performance. Conceivably,
for example, the number of ants used by the algorithm might mitigate the effects
of the cost matrix standard deviation. Until this is established in a methodical and
reproducible fashion, we cannot ignore the possible influence of this factor in our
experiments with ACO algorithms.

The use of a well-established Design of Experiments approach with two-stage
nested designs and analysis with the General Linear Model could also be applied
to other heuristics for the TSP. It is important that we introduce such rigour into
the field so that we can move from the competitive testing of highly engineered
designs to the scientific evaluation of hypotheses about algorithms.
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Abstract. The quadratic multiple knapsack problem is an extension of the well 
known 0/1 multiple knapsack problem. In the quadratic multiple knapsack prob-
lem, profit values are associated not only with individual objects but also with 
pairs of objects. Profit value associated with a pair of objects is added to the 
overall profit if both objects of the pair belong to the same knapsack. Being an 
extension of the 0/1 multiple knapsack problem, this problem is also NP-Hard. 
In this paper, we have proposed a new steady-state grouping genetic algorithm 
for the quadratic multiple knapsack problem and compared our results with two 
recently proposed methods – a genetic algorithm and a stochastic hill climber. 
The results show the effectiveness of our approach.  

Keywords: Combinatorial optimization, grouping genetic algorithm, knapsack 
problem, quadratic multiple knapsack problem. 

1   Introduction 

The quadratic multiple knapsack problem (QMKP) is an extension of the well known 
0/1 multiple knapsack problem (MKP). In MKP we are given a set of n objects, and K 
knapsacks. Each object i, i ∈ {1, 2, …, n}has profit pi and weight wi. Each knapsack j, 
j ∈ {1, 2, …, K} has a capacity Cj. The multiple knapsack problem consists in select-
ing the K disjoint subsets of objects to be put into the K knapsacks such that the total 
weight of objects in subset j should not exceed Cj and the overall profit of all the 
selected objects is as large as possible. By introducing binary variables xij to indicate 
whether object i is included in knapsack j (xij =1) or not (xij =0), the MKP can be 
formulated as: 

Maximize                                       
1 1= =

=∑∑
n K

ij i
i j

P x p  
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MKP is NP-Hard as for K=1 it reduces to 0/1 Knapsack Problem [1]. QMKP is an 
extension of MKP. The only difference between QMKP and MKP is that in QMKP 
profit values are associated not only with individual objects but also with pairs of 
objects. The profit value pij associated with a pair of objects i and j is added to the 
over all profit, if both object i and j belong to the same knapsack. Therefore QMKP 
seeks to maximize 

1

1 1 1 1 1

−

= = = = + =

= +∑∑ ∑ ∑ ∑
n K n n K

ij i ik jk ij
i j i j i k

P x p x x p
 

QMKP is NP-Hard as it reduces to MKP when all pij are zero.  
Though MKP is widely studied and a number of evolutionary algorithms have been 

proposed for it [2, 3, 4], QMKP is only recently defined and studied by Hiley and 
Julstrom [5]. They considered a restricted version of QMKP in which all capacities Cj 
are same.  They presented three methods − a greedy heuristic, a generational genetic 
algorithm and a stochastic hill climber for their version of QMKP. On the test in-
stances considered, stochastic hill climber obtained better solution on average fol-
lowed by genetic algorithm and greedy heuristic. Genetic algorithm performs better 
on instances with small K, but its performance decline sharply as K grows. Hereafter 
this genetic algorithm will be referred to as HJ-GA and stochastic hill-climber as HJ-
SHC. Hiley and Julstrom [5] cited a practical application of QMKP in the situation 
where a manager has to select persons for multiple projects, each with its own budget, 
at the same time. The manager knows the salary of each person and, the productivity 
of each person, both individually and in pairs. Obviously, the manager will try to 
assign persons to projects in such a way that maximizes the overall productivity with-
out exceeding the budget of any project.   

Clearly QMKP is a grouping problem [6, 7], i.e. a problem that seeks an optimal 
assignment of objects according to a given cost function into different groups subject 
to some constraints. Therefore when designing a genetic algorithm for this problem, 
genetic operators should be designed in such a way that these operators should try to 
preserve grouping information as far as possible while generating new chromosomes 
[6, 7]. The genetic algorithm for the QMKP that this paper describes is designed with 
exactly the aforementioned idea. Falkenauer [6, 7] named such type of genetic algo-
rithms as grouping genetic algorithms. Like Hiley and Julstrom [5], we also assume 
that all knapsack capacities Cj are same and are equal to C. We have compared our 
genetic algorithm with the genetic algorithm and the stochastic hill climber proposed 
by Hiley and Julstrom [5]. The results show the effectiveness of our approach. 

This paper is organized as follows: Section 2 describes our grouping genetic algo-
rithm. Computational results are presented in section 3, whereas section 4 outlines 
some conclusions. 
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2   The Grouping Genetic Algorithm 

We have developed a steady-state grouping genetic algorithm (SSGGA) for the 
QMKP. Steady-state genetic algorithm uses steady-state population replacement 
method [8]. In this method genetic algorithm repeatedly selects two parents, performs 
crossover and mutation to produce a single child that replaces a less fit member of the 
population. This is different from generational replacement, where a new population 
of children is created and the whole parent population is replaced. The steady-state 
population replacement method has an advantage over generational method due to the 
fact that the best solutions are always kept in the population and the child is immedi-
ately available for selection and reproduction. Thus we can possibly find better solu-
tions quicker. Moreover with steady-state population replacement method we can 
easily avoid the multiple copies of the same individual in the population. In the gen-
erational approach multiple copies of the same individual can exist in the population. 
Though these individuals are usually the best individuals, they can rapidly dominate 
the whole population. In this situation, no further improvement in solution quality is 
possible without mutation, and often, a much higher mutation rate is required to get 
further improvements. In the steady-state approach the child can be easily checked 
against the existing population members and if it is identical to any existing individual 
in the population then it is discarded. In this way the problem of premature conver-
gence is deterred by disallowing the multiple copies of the same individual in the 
population. The main features of SSGGA are described below. However, before de-
scribing the main features of SSGGA, we need to define the concept of relative value 
density [5]. The relative value density of an object i with respect to a set S of objects 
is the sum of its profit value pi and all profit values pij such that j ∈ S divided by  
its weight. 

2.1   Chromosome Representation 

Chromosome is represented as set of knapsacks i.e. there is no ordering among the 
knapsacks. With such a representation there is no redundancy. Every solution is rep-
resented uniquely. 

2.2   Fitness 

Fitness of a chromosome is equal to the overall profit of the solution it represents. 

2.3   Crossover 

Our crossover operator is derived from the crossover operator proposed in [9] for the 
one-dimensional bin-packing problem. Our crossover operator consists of two phases. 
First phase iteratively builds the child chromosome. During each iteration, it selects 
one of the two parents uniformly at random and copies the knapsack with largest 
profit value from the selected parent to the child. Then it deletes all the objects be-
longing to this knapsack from both the parents and profit values of the knapsacks of  
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the parents are updated accordingly. This process is repeated K times. The second 
phase iteratively tries to include as many unassigned objects as it can into the knap-
sacks without violating the capacity constraints. During each iteration it selects a 
knapsack at random and adds to it the unassigned object that fits and has highest rela-
tive value density with respect to the objects already in the selected knapsack. This 
process is repeated until it becomes impossible to add any more objects to any of the 
knapsacks.  

We have used binary tournament selection to select the two parents for crossover, 
where more fit candidate is selected with probability pbetter.  

Similar to [5, 9] here also crossover and mutation is used in a mutually exclusive 
manner, i.e. each child is generated by either the crossover operator or the mutation 
operator but never by both. Crossover is applied with probability pc, otherwise muta-
tion is used. 

2.4   Mutation 

The mutation operator removes some of the objects from knapsacks. Then it pro-
ceeds similar to the second phase of crossover operator. We have used 3-ary tour-
nament selection to select a chromosome for mutation, where the candidate with 
better fitness is selected with probability 1.0. 3-ary tournament selection is used 
because more fit chromosome has greater chance of generating a better chromo-
some after mutation. 

2.5   Replacement Policy 

The generated child is first tested for uniqueness against the existing population mem-
bers. If it is unique then it always replaces the least fit member of the population, 
otherwise it is discarded. 

2.6   Initial Population Generation 

Each member of the initial population is generated using a procedure that is derived 
from greedy heuristic proposed in [5]. The procedure used here differs from the 
greedy heuristic in that it selects first object of each knapsack randomly from the list 
of unassigned objects rather than the unassigned object with highest relative density 
with respect to the list of unassigned objects. Initially all the knapsacks are empty. 
The procedure fills each knapsack one by one. The first object of the knapsack is 
selected randomly as already described. Then objects are added to the knapsack itera-
tively. During each iteration, an unassigned object that fits and has highest relative 
value density with respect to the objects already in the knapsack is added to the knap-
sack. This process is repeated until it becomes impossible to add any more objects to 
the knapsack. After this the next knapsack is filled in the same way. The whole proc-
ess is repeated until all the knapsacks have been filled. 

Each newly generated chromosome is checked for uniqueness against the popula-
tion members generated so far and if it is unique it is included in the initial population 
otherwise it is discarded. 
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3   Computational Results 

SSGGA has been coded in C and executed on a Pentium 4 system with 512 MB 
RAM, running at 2.4 GHz under Red-Hat Linux 9.0. In all our experiments with 
SSGGA we have used pc = 0.6, pbetter = 0.8. Mutation try to remove each object allo-
cated to a knapsack with probability (2×K/nobj), where nobj is the number of objects 
allocated to knapsacks. With this probability mutation will remove on an average two 
objects per knapsack. The mutation operator of HJ-GA [5] also removes two objects 
from each knapsack. The population size of SSGGA is equal to n, the number of ob-
jects in the test instance. All the parameter values were chosen after large number of 
trials. These parameter values provide good results, although these values are in no 
way optimal for all problem instances. We have tested SSGGA on the same 60 
QMKP instances as used by Hiley and Julstrom [5]. These instances are characterized 
by three things − the density d (proportion of non-zero pij), number of objects n, and 
the number of knapsacks K. For every instance, the knapsack capacities are set to 
80% of the sum of instance's object's weights divided by K. For these instances d is 
either 0.25 or 0.75, n is either 100 or 200 and K can take any value from {3, 5, 10}. 
There are 5 instances for a particular d, n and K, resulting in a total of 60 instances. 
Originally these instances are the instances of the quadratic knapsack problem and are 
available at http://cermsem.univ-paris1.fr/soutif/QKP/QKP.html. SSGGA was exe-
cuted 40 times on each instance, each time with a different random seed. During each 
run both HJ-GA and HJ-SHC generate 20000 candidate solutions. Therefore to allow 
a fair comparison with HJ-GA and HJ-SHC, SSGGA also generates 20000 candidate 
solutions. 

Tables 1 and 2 compare the performance of SSGA with HJ-GA and HJ-SHC. Ta-
ble 1 reports the performance of three algorithms on instances with d = 0.25, whereas 
table 2 reports the same for d = 0.75. Data for HJ-GA and HJ-SHC are taken from [5]. 
For each instance, tables 1 and 2 report the number of objects n, the number of knap-
sacks K in it, its number and knapsacks capacity C. For each of the three approaches 
on each instance the tables report the best and average value of the solution, the stan-
dard deviation of solution values and average execution time in seconds.  

Tables 1 and 2 clearly show the superiority of SSGGA over HJ-GA and HJ-SHC. 
Average solution values obtained by SSGGA are always better than those obtained 
with HJ-GA and HJ-SHC. In comparison to HJ-GA, the best solution of SSGGA is 
better on 56 instances and worse on 4 instances. The best solution of SSGGA is better 
than that of HJ-RHC on 57 instances and worse on 3 instances.  

HJ-GA and HJ-SHC were executed on Pentium 4, 2.53 GHz system with 1 GB 
RAM, whereas SSGGA was executed on Pentium 4, 2.4 GHz system with 512 MB 
RAM. Therefore it is not possible to exactly compare the running times of SSGGA 
with those of HJ-GA and HJ-SHC. However, on instances with K = 3, SSGGA is 
clearly slower to HJ-GA and HJ-SHC, whereas on instances with K = 10, it is clearly 
faster. On instances with K = 5, running times of SSGGA are less in comparison to 
HJ-SHC and roughly the same in comparison to HJ-GA. The running time of HJ-GA 
and HJ-SHC increases with increase in K, whereas that of SSGGA decreases. The 
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cost of mutation operator of SSGGA, mutation operator of HJ-GA, which is also the 
variation operator of HJ-SHC, increases with increase in K. This is due to the fact that 
mutation deletes more objects with increase in K, and as a result more time is spent in 
subsequent filling of knapsacks with unassigned objects. The cost of crossover opera-
tor of HJ-GA also increases with increase in K because crossover operator of HJ-GA 
first copies to the child the object assignments common to both the parents. Clearly 
common object assignments decreases with increase in K and as a result here also 
more time is spent in subsequent filling of knapsacks with unassigned objects. This 
explains the increase in running times of HJ-GA and HJ-SHC with increase in K. 
However, the cost of crossover operator of SSGGA decreases with increase in K. This 
is due to the fact that for small K, the first phase of crossover operator of SSGGA is 
more disruptive and as a result after the end of first phase, there are lesser number of 
objects in knapsacks, therefore more time is spent in second phase, which tries to fill 
the knapsacks to their capacity with unassigned objects. This decrease in crossover 
cost is more in comparison to increase in mutation cost with increase in K. Moreover, 
crossover is used 60% of times. These two factors together are responsible for the 
decrease in running time of SSGGA with increase in K.  

4   Conclusions 

In this paper we have developed a new steady-state grouping genetic algorithm 
(SSGGA) for the quadratic multiple knapsack problem. We have compared SSGGA 
with two recently proposed heuristics HJ-GA and HJ-SHC [5] on 60 QMKP in-
stances. SSGGA outperformed HJ-GA and HJ-SHC both in terms of best as well as 
average solution quality. In fact, average solution values obtained by SSGGA are 
always better than those obtained by HJ-GA and HJ-SHC. 
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Abstract. The strategic supply chain design problem which allows ca-
pacity shifts and budget limitations can be formulated as a linear pro-
gram. Since facilities are allowed to be opened or shut down during the
planning horizon, this problem is in fact a mixed integer problem. Choos-
ing the optimal set of facilities to serve the customer demands is an NP-
hard combinatorial optimization problem. We present a hybrid method
combining an evolutionary algorithm and LP based solvers for solving
large-scale supply chain problems, which takes its power from filtering
out infeasible solutions. The EA incorporating these filters is shown to
be faster than the MIP solver ILOG CPLEX in most of the considered
instances. For the remaining instances it finds feasible solutions much
faster than the MIP solver.

1 Introduction

Consider the following optimization problem: Given a set of customers to serve,
a set of products to manufacture and deliver, projections for the demand of the
customers as well as for transportation and purchasing costs, the aim is to find
optimal combinations of facilities to deliver the goods for a predefined number
of time periods. This is a typical problem in supply chain design.

Many simple facility location problems have been studied in the past [1,2,3].
However, in real world problems the number of locations that can be opened or
shut down is often implicitly limited by budget constraints. Also, in real world
problems capacity limitations are usually not fixed, but can be extended.

In this work, we use a more advanced supply chain model, that introduces
more freedom of choice, but also increases the complexity and therefore the
optimization effort. We propose a hybrid method comprising filters and an evo-
lutionary algorithm to approach large scale supply chain design problems. We
show in experiments on various problems of different sizes how much can be
gained using the filters and compare the results to ILOG CPLEX [4].

The paper is organized as follows. In Section 2, the mathematical formulation
for the considered supply chain optimization problem is given. Methods for filter-
ing out infeasible solutions and thereby reducing the search space are presented
� This work was partially supported by the Rhineland-Palatinate Cluster of Excellence

‘Dependable Adaptive Systems and Mathematical Modelling’.
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in Section 3. In Section 4, we present a simple evolutionary algorithm incorpo-
rating these filters and give results in Section 5. Conclusions and an outline for
future research are provided in Section 6.

2 Supply Chain Optimization

Many supply chain optimization problems can be formulated as a Linear Pro-
gram (LP) or a Mixed Integer Linear Program (MIP). This allows standard
algorithms and also standard software to be used, e. g. CPLEX. In this work, we
use the mathematical model given in [5], which is formulated as an MIP.

2.1 Problem Definition

The model uses a number of parameters, which can be best described in form
of matrices. In the following, Xt

l,p denotes the value for parameter or variable X

for time period t, location l and product type p, and Xt
l,l′,p denotes the value for

the arc from facility l to l′. If X does not depend on the location, the product
type or the time period, the corresponding index l, p or t is not written.

Parameter Dt
l,p contains the customer demand, PCt

l,p the unit purchase cost,
TCt

l,l′,p the transportation cost, ICt
l,p the inventory carrying cost and OCt

l the
operation cost. The shutdown cost SCt

l , the facility setup cost FCt
l and the cost

for shifting capacity from one facility to another facility MCt
l,l′ are limited by

a budget Bt. Non-invested capital ξt can be saved with interest rate βt. The
capacity of a facility is limited by an upper bound K

t

l and a lower bound Kt
l ,

the latter also denotes a minimal throughput for this facility. A unit capacity
consumption factor αl,p allows to let different product types or facilities have
different influences on the capacities.

The variables in this model are the binary operational status δt
l of the facilities,

where δt
l = 1 denotes that facility l is operating, and δt

l = 0 that it is not
operating in time period t. Closed facilities have no capacity, and once a facility
falls below the minimum capacity Kt

l it has to be closed. The other variables are
the product flow xt

l,l′,p, the amount of purchased products bt
l,p, the amount of

products to be stored for the next time period yt
l,p, and the amount of capacity to

be shifted zt
l,l′ . Some values for the first time period are pre-defined, such as the

amount of products held on stock, the non-invested capital and the operational
status. All parameters have positive values, only the shutdown costs SCt

l can be
negative, e. g. when governmental subsidies are given.

The cost function C to be minimized is:

C =
∑

t∈T
l∈L
p∈P

PC t
l,p b t

l,p +
∑

t∈T
l,l′∈L,l �=l′

p∈P

TC t
l,l′,p x t

l,l′,p +
∑

t∈T
l∈L
p∈P

IC t
l,p y t

l,p +
∑

t∈T
l∈L

OC t
l δ

t
l (1)

Here, T = {1, . . . , n} is the set of time periods, P the set of product types and
L the set of all facilities, e. g. plants, distribution centers and customers.
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There are three pre-defined sets of facilities: So ⊆ L the facilities to be opened,
Sc ⊆ L the facilities to be closed, and L \ (So ∪ Sc) the non-selectable facilities.
The following equations give the current capacity Kt

l for all facilities:

∀l ∈ Sc, t ∈ T : Kt
l = K

1

l −
∑

τ∈{1,...,t}
i∈So

zτ
l,i (2)

∀l ∈ So, t ∈ T : Kt
l =

∑

τ∈{1,...,t}
i∈Sc

zτ
i,l (3)

∀l ∈ L \ (So ∪ Sc), t ∈ T : Kt
l = K

t

l (4)

The capacity for facilities in Sc is defined by the parameter K
1

l and can only be
reduced by shifting capacity to another facility (2). New facilities start with no ca-
pacity and have to receive capacity shifts before they can operate (3). The capaci-
ties of the remaining facilities is given in the parameter K

t

l and cannot be changed
(4). Using these equations the remaining constraints can be formulated as:

∀l ∈ L, p ∈ P, t ∈ T : bt
l,p +

∑

l′∈L\{l}
xt

l′,l,p + yt−1
l,p = Dt

l,p +
∑

l′∈L\{l}
xt

l,l′,p + yt
l,p (5)

∀l ∈ L, t ∈ T : Kt
lδ

t
l ≤

∑

p∈P

αl,p

⎛

⎝bt
l,p +

∑

l′∈L\{l}
xt

l′,l,p + yt−1
l,p

⎞

⎠ ≤ Kt
l ≤ K

t

lδ
t
l (6)

∀l ∈ Sc, t ∈ T : Kt
l ≥ δt

l ε (7)

∀t ∈ T :
∑

l∈Sc
l′∈So

MCt
l,l′z

t
l,l′ +

∑

l∈Sc

SCt
l

(
δt−1
l − δt

l

)
+

∑

l∈So

FCt
l

(
δt+1
l − δt

l

)
+ ξt

= Bt + (1 + βt−1) · ξt−1 (8)

∀t ∈ T, l ∈ Sc : δt
l ≥ δt+1

l (9)

∀t ∈ T, l ∈ So : δt
l ≤ δt+1

l (10)

In short, constraints (5) state that all demands have to be fulfilled either by
purchasing products, delivery from another location or by having them stored in
the previous time period. Constraints (6) ensure that a facility cannot produce,
receive or store more than its capacity in each time period. Moreover, its maxi-
mum and minimum allowed capacity cannot be exceeded. Constraints (7) (with
ε > 0 sufficiently small) ensure that a facility has to be closed when all its capac-
ity has been removed. Constraints (8) give the budget limitations, which include
shutdown and setup costs as well as moving capacity costs, and allow unused
budget to be saved (with interest) for a later time period. Finally, constraints (9)
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and (10) state that facilities that have been closed cannot be re-opened, and fa-
cilities that have been opened cannot be closed again. Obvious constraints, such
that all values have to be real and positive, have been left out.

The problem can be reduced to a static uncapacitated facility location problem
which was shown to be NP-hard in Cornuéjols et al. [6].

2.2 Related Work

In [5] various small problems for this model and a slightly improved version
were solved to optimality by off the shelf commercial software. Velásquez and
Melo [7] have introduced variable neighborhood search heuristics to approach
larger problems. Here, a linear programming (LP) solver was used to solve the
LP subproblem that is obtained by fixing all δt

l to values determined by the
heuristics. Based on the total cost, the heuristics would then slightly change the
δ-values and calculate the new δ-combination. However, no explicit effort has
been made to filter out infeasible combinations. So, the LP solver often takes
a non-negligible time to report the infeasibility of the considered combination.
Since an infeasible combination is undesired, this though small calculation time
can be considered as wasted.

3 Search Space Reduction

We propose a way of improving the heuristics in [7]. Again we separate the gen-
eration of δ-combinations from the LP calculations. The generation of combina-
tions can be seen as a combinatorial optimization problem with a very complex
cost function. Since most computation time is used in the LP calculations we
seek to avoid this calculation as often as possible.

Our method of choice is filtering. Once a δ-combination has been chosen, a
number of simplified constraint checks are applied. Only combinations passing
these checks will be presented to the LP solver. This way, we can avoid many
unnecessary calls to the LP solver, allowing it to reuse information from previous
runs without the interruption caused by an infeasible combination. Also, by using
simplified and explicit constraints, these checks can be carried out faster.

3.1 Shutdown and Setup Costs

A first check that can be applied is to calculate the sum of shutdown and setup
costs and check whether the amount stays within the budget limits:

∀t ∈ T :
∑

l∈Sc

SCt
l

(
δt−1
l − δt

l

)
+

∑

l∈So

FCt
l

(
δt+1
l − δt

l

) ≤ Bt + (1 + βt−1) · ξ̂t−1

Here, ξ̂ is the remaining capital when capacity shift costs are ignored. This
inequality is a relaxation of (8). The check filters out all combinations where too
many changes are scheduled. In real world examples only a very small number
of facilities are supposed to be opened, but a larger number of possible locations
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may be provided to choose from. Once a combination is chosen this check can be
applied iteratively for each time period. When the accumulated costs exceed the
budget (plus accumulated interests) the combination can be discarded, aborting
all following checks. Also, a specific facility can be identified whose opening or
shutdown caused the check to fail.

3.2 Capacity Shifts

In the model, capacity can only be shifted from existing to new facilities. Also,
all capacity from a facility that is to be closed has to be shifted to new facilities.
Since a maximum capacity is given, this may not always be possible. A quick
check can reveal whether there are enough new facilities to receive the capacity
of the existing facilities. Again, this has to be verified for each time period.

This analysis also gives an amount of capacity ẑ which has to be shifted, thus
creating capacity shift costs that have to be covered by the budget. Since these
costs depend on time period and involved facilities, we cannot determine the
exact cost, but only give lower bounds. A first lower bound takes the minimum
of all entries in MC. A better lower bound takes account of the facilities that
need to lose or receive capacity and uses the minimum of only those entries
in MC. A more sophisticated lower bound may also include the time period.
However, capacity shifts can be scheduled in any time before closing the facility,
so this does not not yield much. Denoting this minimum as MCmin, these checks
can be formulated as:

MCmin · ẑ +
∑

l∈Sc

SCt
l

(
δt−1
l − δt

l

)
+

∑

l∈So

FCt
l

(
δt+1
l − δt

l

) ≤ Bt + (1 + βt−1) · ξ̂t−1

3.3 Customer Demands

The parameter D gives the customer demands. All demands have to be fulfilled.
However, customers may buy the needed products from an external supplier.
This is accounted for by introducing some form of penalty costs. In order for the
customer demands to be fulfilled there has to be an operating facility and a path
from this facility to the customer. If this path passes other facilities (e. g. plants
– warehouses – customers), they also have to be operating. Calculating all paths
for all customers may be expensive, considering that the path may reach over
multiple time periods since products can be stored. We therefore determine for
each customer and product type only the set of facilities that can deliver the
goods directly. Out of this set at least one facility has to be operating.

4 Evolutionary Algorithm for the Supply Chain Problem

In this section we present a simple Evolutionary Algorithm (EA) that incorpo-
rates these checks. The algorithm is shown in Fig. 1. In this simple EA we use only
mutation. The population size is fixed at μ. In each generation a mutation oper-
ation is used to generate λ valid children. After the mutation operator is applied
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function EA( κ, λ, μ: Integer );
begin

for i := 0 to μ−1 do p[i] := Init ();
for iter := 0 to κ−1 do
begin

for i := 0 to λ−1 do
begin

repeat
p[μ+i] := Mutate( p[i mod μ] );
if CheckFilters(p[μ+i]) then LPsolver(p[μ+i]);

until isFeasible (p[μ+i]);
end;
p := Select(p);

end;
return Best(p);

end;

Fig. 1. The Evolutionary Algorithm Framework

the resulting combination is presented to the filter. If one of the checks fails, the
combination is removed and another offspring is created. Only those combinations
that pass all checks are given to the LP solver. The combination is also discarded,
if the LP solver states infeasibility. Once λ valid offspring combinations are found
and evaluated, the combinations to form the next generation are selected. Out of
the μ original and the λ offspring combinations, the μ best individuals are chosen,
following a (μ + λ) selection paradigm. This procedure is repeated κ times.

To build the initial generation, random combinations can be used as well as
combinations based on the LP-relaxation solution of the supply chain problem.
In the random approach, a combination is created by scheduling an opening/
closing of a facility with probability p, choosing the time period at random.
When no information about the maximum number of possible shutdowns and
openings is available, this procedure has to be repeated for some possible values
of p. Once a feasible combination is found, p can be adjusted to match the
best known combination. The LP-relaxation approach works by solving the LP
problem which results when dropping the constraint that all δ have to be binary.
The solution found may still assign binary values to some δ. The remaining non-
binary values can be used to ‘guess’ the values of other δ. A binary δ-combination
can be generated from this knowledge by random assignment of 0 or 1, using the
δ-values as a probability. However, these combinations tend to be infeasible since
they often schedule more openings/shutdowns than the budget allows. Reducing
or limiting the number of opening/shutdowns helps to find feasible combinations.

Instead of storing all δ-values, we use a more compact encoding. For each
selectable facility l we store the time period γl of its opening/shutdown. Thus,
each individuum can be described by only s =| So∪Sc | integer variables instead
of | T | · | L | binary variables. The operational status δ can easily be extracted
from this encoding using the following formula:
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δt
l = 1↔ (l ∈ So ∧ t ≥ γl) ∨ (l ∈ Sc ∧ t < γl) ∨ l ∈ L \ (So ∪ Sc) (11)

The mutation operator used in this EA changes the time period for the open-
ing/shutdown of a random facility to a random value γl ∈ [2, n + 1]. To schedule
an opening/shutdown for period γl = n+1 denotes that the facility should not be
opened/closed during the planning horizon. We have also tried other mutation
operators, but the multiple consecutive application of the described operator
gave the best results.

5 Experiments

To show the effects of these filters we ran experiments on various supply chain
instances. Since standard MIP software like ILOG CPLEX [4] can solve smaller
problems in very short time, we concentrated on larger instances. Finding real
world data for those larger instances proved to be difficult, so we used randomly
generated instances as described in [8]. Nine instances were generated with up to
70 selectable and 55 non-selectable locations, 5 product types and 8 time periods.
In all instances there are two kinds of distribution centers (DCs). All products
have to be transported from the plants to central DCs, and from there to regional
DCs before they arrive at the customer sites. Each DC can store products for
later time periods. The DCs are the selectable facilities in these instances, all
other facilities (such as customers and plants) are non-selectable. The capacities
of the locations are limited, but those limits can be changed during the planning
horizon according to the model.

In a first set of experiments we were interested in the number of δ-combina-
tions that remain when using the filters. Table 1 shows the results for six small
instances (H1, . . . , H6). Since this analysis is very expensive – it requires calcu-
lating or checking all δ-combinations – it was not applied to the larger instances.
The first line gives the number of possibilities to schedule openings/shutdowns
for s =| So ∪ Sc | locations in n =| T | time periods: ns. Most of these com-
binations are infeasible due to the budget constraints. After the first check the
number of combinations is already drastically reduced. Another large amount of
combinations is filtered out by the capacity shift checks. The remaining number
is shown in the third line. However, as stated in Section 3, the infeasibility of
some combinations cannot be recognized by these simple checks. The number of
feasible combinations is shown in the fourth line. This number was determined
by handing all remaining combinations to the LP solver. The last line shows the
influence of the demand satisfiability check. This check filters out combinations
with high penalty costs regardless of their feasibility, so the remaining number of
combinations is often smaller than the actual number of feasible combinations.
Only in problem H3 no combination lead to unfulfilled demands.

The effect of unfulfilled demands can be seen in Fig. 2. The figure shows the
calculated costs for some random combinations for problems H1 and N7. In H1
many combinations can be found with costs around C ≈ 106, near the optimum
(953 824), but there are some “bands” of combinations with higher costs. All
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Table 1. Number of δ-combinations remaining after the filters

Problem H1 H2 H3 H4 H5 H6

Total 330 430 330 345 330 330

Shutdown/Opening Cost Check 278 053 8 881 793 101 626 1 395 442 106 245 158 415
Capacity Shift Check 33 938 517 723 11 747 161 352 9 410 11 890
Feasible Combinations 25 539 322 352 8 321 111 009 6 795 7 671
Demand Satisfiability Check 21 052 299 508 11 747 134 802 3 997 8 072

4.0 · 106

3.5 · 106

3.0 · 106

2.5 · 106

2.0 · 106

1.5 · 106

1.0 · 106

0.5 · 106

0
H1

2.5 · 107

2.0 · 107

1.5 · 107

1.0 · 107

0.5 · 107

0
N7

Fig. 2. The distribution of the objective function values for problems H1 and N7

these combinations have unfulfilled demands, because some required facility was
closed or not opened, which generates penalty costs. In problem N7 the bands are
not that clear, but they also exist here. Problem N7 shows even more bands than
in H1. In fact, every dot in this plot above 0.35 ·107 belongs to a higher band. We
have discovered these bands in all considered problems, with the exception of H3.
An explanation for these bands is the possibility to close (or not open) required
facilities. The longer a required facility is closed the higher is the penalty cost.
The penalty cost is supposed to be much larger than the differences between the
feasible solutions. So for each time period and each required facility a different
penalty is applied, which creates the observed bands. The demand satisfiability
check filters out these expensive combinations, leaving only the lowest band,
marked by bold dots in the figure. These remaining combinations are only up to
10 % more expensive than the optimal or – in case of the larger problems – the
best known solution.

In the next set of experiments we were interested in the overall performance of
our proposed EA. We fixed μ = 5 and λ = 35, and used CPLEX 10.1 to evaluate
the fitness of each δ-combination, i. e. solve the underlying LP. The number of
generations was set to κ = 50, so CPLEX had to evaluate at least μ+λ·κ = 1755
combinations. These parameters are a compromise between computation time
and solution quality. All CPU times reported here refer to a 3 GHz Pentium IV.
The results are averaged over 10 runs.

Figure 3 shows the averaged behavior of the EA for two different problems.
In each case the first feasible solution is found almost instantly. In problem N7
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Fig. 3. Behavior of the EA with and without demand check for problems N7 and N19

the first solution already exceeds the best known solution by only 3 %. This
best known solution is reached in 4 of the 10 EA runs after 30-40min, and also
by CPLEX after 25 h. The figure also shows the behavior of the EA when the
demand check is not active. Without this check the cost of the first solution is
almost four times as high as the best known solution, also the improvement is
very slow. To compare the EA to standard software we show the behavior of
CPLEX in the same plot. CPLEX in its standard configuration does not find a
feasible solution for about 20 min, and the first solution it finds is worse than
the first solution of the EA.

In problem N19 the influence of the demand check is negligible. Here, only a
small amount of δ-combinations can be found in higher bands, and therefore be
cut off. The EA finds a good starting solution and steadily improves it. However,
it does not reach the best known solution, but converges between 1.5 % and 1.8 %
above it. CPLEX takes about 45 min to find a feasible solution, but this time
it is already better than the best solution found by the EA. The best known
solution was found by CPLEX after four days.

Problem instance N19 was the worst instance for the EA. Problem N20 showed
similar results like N7. We therefore omit the plot. The main difference to N7 is
that the computation times are roughly 5 times as high, due to the problem size.
However, the best known solution in N20 was found in an EA run after about 4 h,
while CPLEX takes about 3 h to find a first feasible solution and does not find the
best known solution in the first 30 h.

Table 2 shows the average number of combinations that were filtered out by
the proposed filters in an EA run. These numbers are significantly lower than in
Table 1, but the filters are still useful, since they filter out about 100 times more
combinations than feasible ones, leaving only a small percentage of unnecessary
calculations. In our experiments an LP evaluation took about 1-8 s, depending
on the problem. An LP run on an infeasible combination took only 0.1-0.8 s, so
it is roughly ten times faster. However, CPLEX cannot start from a good LP
solution in the next evaluation, so the evaluations after such infeasible runs are
slowed down. The advantage of the filters is clear. They can be applied thousand
times a second and do not affect the underlying LP solver. Without these filters
the EA would show very poor results.
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Table 2. Average number of δ-combinations filtered out by the filters in an EA run

Problem N7 N19 N20

Shutdown costs too high 191068 193337 148843
Capacity shifts impossible 22108 26967 19450
Demand not met 1622 18 2
Still infeasible 32 16 94
Feasible 1755 1755 1755

6 Conclusions

We have proposed an EA using filters to solve large-scale supply chain design
problems. We have showed that the EA can find feasible solutions very quickly.
The filters reduce the search space significantly and allow the EA to even find
the optimal solution in some problems. However, in problems that show many
combinations in the lower band, the demand filter cannot be applied efficiently,
so the EA may not find the optimal solution and is outperformed by CPLEX.
Our method still has an advantage in these cases, since it finds feasible solutions
and even good solutions long before CPLEX. These can be given to CPLEX as
a starting solution, in order to improve the performance of the MIP solver. This
is an issue of future research.
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6. Cornuéjols, G.P., Nemhauser, G.L., Wolsey, L.A.: The uncapacitated facility loca-
tion problem. In Mirchandani, P.B., Francis, R.L., eds.: Discrete Location Theory.
Wiley, New York (1990) 119–171

7. Velásquez, R., Melo, M.T.: Solving a large-scale dynamic facility location problem
with variable neighbourhood and token ring search. In: Proceedings of the 39th
ORSNZ Conference, Auckland, NZ (2004)

8. Melo, M.T., Nickel, S., Saldanha da Gama, F.: Large-scale models for dynamic multi-
commodity capacitated facility location. Technical Report 58, Fraunhofer Institut
for Industrial Mathematics (ITWM), Kaiserslautern, Germany (2003) Available at
http://www.itwm.fhg.de/

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

http://www.cplex.com/
http://www.itwm.fhg.de/


C. Cotta and J. van Hemert (Eds.): EvoCOP 2007, LNCS 4446, pp. 229 – 239, 2007. 
© Springer-Verlag Berlin Heidelberg 2007 

Crossover Operators for the Car Sequencing Problem 

Arnaud Zinflou, Caroline Gagné, and Marc Gravel 

Université du Québec à Chicoutimi, 555 boulevard de l’université, Chicoutimi,  
Qc, G7H2B1, Canada 

{arnaud_zinflou, caroline_gagne, marc_gravel}@uqac.ca 

Abstract. The car sequencing problem involves scheduling cars along an  
assembly line while satisfying as many assembly line requirements as possible. 
The car sequencing problem is NP-hard and is applied in industry as shown by 
the 2005 ROADEF Challenge. In this paper, we introduce three new crossover 
operators for solving this problem efficiently using a genetic algorithm. A com-
putational experiment compares these three operators on standard car sequenc-
ing benchmark problems. The best operator is then compared with state of the 
art approach for this problem. The results show that the proposed operator con-
sistently produces competitive solutions for most instances. 

1   Introduction 

The car sequencing problem became important in the production process of most car 
manufacturers when mass customization replaced mass standardisation. The produc-
tion line of a modern car factory can be viewed as a linear manufacturing process gen-
erally composed of three consecutive workshops: the body fabrication shop, the paint 
shop and the assembly shop. In the literature we find a « standard » version of the 
problem which deals only with assembly shop requirements. In this workshop, each car 
is characterized by a set of different options O (sunroof, ABS, air-conditioning, etc.) 
among which some may require more work [1]. To ensure smooth operations in the as-
sembly shop, cars requiring high work-content must be distributed throughout the as-
sembly line. This requirement may be formalized by ro/so ratio constraints that state 
that any subsequence of so cars must include at most ro cars with the option o. When a 
ratio constraint is exceeded in a subsequence, there is a violation. In order to simplify 
solution, cars requiring the same configuration of options are clustered into the same 
car class. For each of the V classes thus created, we know exactly the number of cars 
to produce. These quantities engender production constraints which state that exactly cv 
cars of the v class must be produced. Then, the car sequencing problem involves find-
ing the order in which nc cars from different classes should be produced in order to 
minimize violations. This problem has been shown to be NP-hard in the strong sense 
[2]. A detailed description of the formulation of both the industrial and standard  
version of the car sequencing problem can be found in [3, 4].  

The standard car sequencing problem has been widely studied since its first intro-
duction in the middle 80’s and comprehensive surveys on the problem and the meth-
ods used to solve it can be found in literature [5, 6]. Most recent works have focused 
on neighbourhood search [7, 8] and on various ant colony optimization algorithms  
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[4, 5, 9-10]. One notes that few authors have proposed genetic algorithms, save for 
Warwick and Tsang [11] and most recently Terada and al. [12]. This situation may be 
explained by the difficulty of defining specific and efficient genetic operators for the 
problem. In fact, traditional genetic operators are generally defined for traveling 
salesman problems (TSP), binary representation problems [13, 14] or real codification 
problems [15] and can not deal adequately with the specificities of car sequencing.  

In this paper, we introduce three new crossover operators to efficiently solve the car 
sequencing problem with a genetic algorithm. The remainder of the paper is organized 
as follows: the next section briefly presents the genetic algorithm and its application to 
car sequencing; in Section 3, we describe the three new crossover operators proposed; in 
Section 4, we present the computational experiment on CSPLib’s benchmarks. Some 
concluding remarks are drawn in the final section.  

2   Genetic Algorithms (GA) 

Genetic algorithms are stochastic algorithms based upon the natural selection theory 
of C. Darwin and the genetic inheritance laws of G. Mendel.  The basic concepts of 
genetic algorithms were first presented by Holland [16] for mathematical optimization 
and popularised thereafter by Goldberg [17]. The application field of GA techniques 
is wide, and they are particularly successful in solving many hard combinatorial opti-
mization problems [15, 17-22].  

To our knowledge, Warwick and Tsang [11] were the first to apply genetic algo-
rithms in solving the car sequencing problem. In their approach, at each generation, 
selected sequences are combined using a uniform adaptive crossover (UAX); as the 
created offspring may not satisfy the production constraints, they are greedily  
repaired; after repair, each offspring is hill-climbed by a standard swap function. In 
recent work, Terada [12] proposed a classical genetic algorithm for solving the car 
sequencing problems where recombination of two individuals is performed by one-
point crossover and explored the possibility of combining it with Squeaky-Wheel  
Optimization (SWO) techniques. 

3   Three New Crossover Operators 

In order to present the different crossover operators, we must define two important 
concepts used by these operators: the difficulty of a class and the interest to add a car 
of class v at the position i in the sequence.  

The difficulty Dv of a class v is obtained by summing the utilization rates of the op-
tions (utro) required by the class: 

  

1

o

v vk o
k

D o utr
=

=∑  . (1) 

where ovk = {0,1} indicates if the cars of class v require the option k. Formally, the 
utilization rate of an option o can be expressed as a ratio between the number of cars 
requiring this option (nbo) and the maximum number of cars that can receive this op-
tion so that the ro/so is satisfied, i.e: 
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o o
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nc r s

= ⋅⎡ ⎤⎢ ⎥
 . (2) 

A utilization rate greater than 1 indicates that the capacity of the station will inevita-
bly be exceeded. On the other hand, a rate near 0 indicates that the demand is very low 
with respect to the capacity of the station. However, even if all utilization rates are less 
than or equal to 1, a feasible solution does not necessarily exist. Note that the utilization 
rate for each option is computed dynamically as proposed by Gottlieb et al.[6]. 

The interest Ivi to add a car of class v at the position i given the cars already as-
signed in the sequence is then given by: 

if 0

     o th e rw is e

v v i
v i

v i

D N b N e w V io la t io n s
I

N b N e w V io la t io n s

⎧ =⎪= ⎨
⎪ −⎩

   
(3) 

where NbNewViolationsvi indicates the number of new violations caused by the addi-
tion of a car of  v at the position i in the sequence. 

3.1   Interest Based Crossover (IBX) 

The first crossover operator proposed is inspired by the PMX operator [23]. Fig. 1 il-
lustrates our approach using a small example. The first step of the IBX operator is to 
randomly select two cut points in both parents P1 and P2.  The substring 351 between 
the two cut points in P1 is then directly pasted in the same position in the offspring. 
Then, two non order lists (L1 and L2) are constituted using the substrings {3, 2} and 
{4, 5, 6} of P2. However, one effect of this process is that the production requirements 
will not always be satisfied. In our example, one notes that production constraints for 
class 2, 3, 4 and 5 are no longer satisfied. To correct this, a replacement of the class 3 
and 5, of which the number exceeds the production constraint, by the class 4 and 2, of 
which the number is now less than the production constraint, is randomly applied in 
the lists L1 and L2 at the second step. Finally, the last step rebuilds the beginning and 
the end of the offspring using the two lists. To do that, the class of cars ∈ L1 are or-
dered using their interests from the first cutting point to the beginning of the se-
quence. Therefore, the class v to place now is given by: 

{ } i f  0 .9 5

o th e rw is e

 a rg m a x     

                      
v i pI

v
V

≤⎧⎪= ⎨
⎪⎩

  (4) 

where p is a random number between 0 and 1 and V is chosen in a probabilistic man-
ner. To determine V, the roulette wheel principle is used [17] within the class for 
which the addition caused the fewest new violations.  

The same process is used to order the cars from the second cutting point to the end 
of the sequence using L2. A second offspring is generated by simply inverting the 
roles of the parents. 

This crossover technique, contrary to PMX, does not try to preserve the absolute 
position of the cars when they are copied from the parents to the offspring. IBX tries 
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Fig. 1. Schematic of IBX crossover 

rather to keep the cars in the same area of the chromosome as the one they occupied 
in one of the two parents. In fact, the number of classes that do not inherit their as-
signed area from one of the two parents is at most equal to the length of the string be-
tween the two cut points.  

3.2   Uniform Interest Crossover (UIX) 

The second crossover operator is a variant of the uniform crossover proposed by Sy-
swerda [24]. The first step of the UIX approach is achieved by creating a random bit 
crossover mask of the same length as the parents. The bits valued at 0 in the crossover 
mask indicate the classes of cars which are taken from parent 1 and pasted at the same 
position in the offspring. In Fig. 2, the positions {2, 3 and 7} of the offspring are filled 
with class 2, 1 and 4 of P1. The others classes (3, 4, 2, 4 and 5) inherited from parent 2 
are then used to constitute a non-order list L. Once again, the production requirements 
will not always be satisfied after this step. To ensure that the production requirement 
will be satisfied in the offspring, the next step consists in finding, using L and the 
class already included in the offspring, which ones exceed or are less than the produc-
tion constraint. Hence in our example, class 4 exceeds the production constraint while 
class 6 is less than this production constraint. Then, a random replacement is applied 
in the list or in subset of classes already included in the offspring, in order to elimi-
nate exceeding classes and to satisfy the production constraints. In Fig. 2, a class 6 re-
places class 4 in the offspring. Finally, the last step of the crossover consists of filling 
the remaining positions of the offspring with classes from L. In this step, a class v is 
chosen to fill a position i according to its interest Ivi as described in IBX crossover.  
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Fig. 2. Schematic of the UIX crossover 
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A second offspring is generated using the same approach by inverting the roles of 
the parents. The particularity of this technique is that class of cars inherited from the 
second parent can be reorganized in the offspring chromosome.  

3.3   Non Conflict Position Crossover (NCPX) 

The last crossover operator attempts to use non conflict positions of the parents to 
generate the offspring. To this end, a random number nbg is chosen between 0 and 
nbposssconflict where nbposssconflict indicates the number of non conflict positions 
found in parent 1 (P1). The number nbg is used to indicate how many “good” classes 
of car will inherit their positions from P1 in the offspring. A random starting point 
(Posd) is selected between the beginning and the end of the offspring. The class lo-
cated in non conflict positions are then copied from the first parent to the offspring 
starting at Posd to the end of the chromosome. If the number of classes included in the 
offspring is less than nbg, the copy process restarts, this time starting at the beginning 
of the offspring chromosome to Posd-1. Note that in all cases, the copy process is 
stopped as soon as nbg cars are copied. The remainder of the classes from P1 are then 
used to constitute the remaining car class list L. Thereafter, another random position 
(Pos) from which the remaining position of the offspring chromosome will be filled is 
chosen. Finally, the classes in L are assigned to the offspring according to Equation 
(4). However, one notes that in case of ties on Arg max{Ivi}, if one class in the tie oc-
cupies the current position in P2 without conflicts, this class is chosen to be inherited 
in the offspring. If no class of cars can be inherited from P2, ties are broken randomly. 
The operation of the NCPX operator is illustrated in Fig. 3 for two individuals P1 = 
21352446 and P2 = 32621454.  Let us assume that there are 5 positions without con-
flicts on P1 and that the number nbg and Posd are respectively equal to 4 and 3. Ac-
cordingly, the class of cars 5, 4, 4 and 2 are copied to the offspring. The remaining 
classes 2, 3, 1 and 6 from P1 are used to constitute the initial list L. Finally, if we as-
sume that Pos = 7, we can fill the remaining positions in the offspring respectively 
with classes 3, 2, 6 and 1 of L starting at Pos. Hence, positions 1, 2 and 6 are directly 
inherited from P2. The final offspring generated from P1 and P2 is then E1= 22651443.  

As for the two other crossovers, a second offspring is generated by simply invert-
ing the roles of the parents. The objective of the NCPX operator is to emphasize non 
conflicts positions from the parents in order to minimise the number of relocated cars.  
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Fig. 3. Schematic of the NCPX crossover 
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4   Computational Experiments 

The performance of the proposed crossover will be illustrated using three test suites of 
car sequencing problem available in the benchmark library CSPLib 
(http://www.csplib.org/). These instances have between 100 and 400 cars. The first set 
(SET1) contains 70 problems of 200 cars having 5 options and from 17 to 30 classes. 
These 70 instances are divided into 7 groups per utilization rate and for which there is 
at least one feasible solution. The second set (SET2) [25] is composed of 9 harder in-
stances some of them are feasible, whereas some others are not. These instances have 
100 cars to sequence, 5 options and from 18 to 24 classes. Finally, the last set (SET3) 
proposed by Gravel and al.[4] contains 30 difficult instances from 200 to 400 cars 
with the same characteristics as those of the SET2. The algorithms proposed here are 
all implemented in C++ and compiled using Visual Studio .Net 2005. The computa-
tional test for the three crossovers ran on a Pentium Xeon (3.6 Ghz and 1 Gb of 
RAM) with Windows XP.   

For all test problems, parameters N, pc, pm, NbGen indicating respectively the 
population size, the crossover probability, the mutation probability and the maximum 
number of generations of our genetic algorithm have been assigned to the following 
values: 250, 0.8, 0.09 and 700. These values were chosen empirically in order to ob-
tain fair comparison with the other algorithms in competition. It is also important to 
note that for the mutation four basic transformations operators are used here: swap, 
reflection, shuffle and displacement. 

Table 1 reports the results of the three proposed approaches for the 70 instances of 
SET1 and compares them to those of 2 other genetic algorithms (GAcSP [11] and 
GA[12]) and to those of two ant colony optimization heuristics (ACS-2D [4] and 
ACS-3D [9]) from the literature. In this table, we present the name of the group in-
stance and the percentage of successful runs for each algorithm. Note that GAcSp 
have not been tested for all the 70 instances. It is therefore hard to compare our ap-
proach directly with these two others genetic algorithms. We can however look at the 
conclusions of the author’s experiments; they show that even if these two methods 
solve instances with small utilization rates the number of successful runs is severely 
decreased with higher utilization rates. We observe that all these instances are trivially 
solved by both ACS algorithm and by the three crossovers proposed. 

Table 2 reports results of ACS-2D, ACS-3D, IBX, UIX and NCPX for SET2. Each 
instance was solved 100 times by each algorithm. The table presents the name of the  
 

Table 1. Results of the GAcSP, GA, ACS-2D, ACS-3D, IBX, UIX and NCPX for SET1 

 
GAcSP 

 
GA 

 
ACS-2D 

 

 
ACS-3D 

 
IBX UIX NCPX Instance 

% % % % % % % 
60-* 19 100 100 100 100 100 100 
65-* - 100 100 100 100 100 100 
70-* 23 100 100 100 100 100 100 
75-* - 80 100 100 100 100 100 
80-* 9 16 100 100 100 100 100 
85-* - 2 100 100 100 100 100 
90-* - 1 100 100 100 100 100 
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Table 2. Results of the ACS-2D, ACS-3D, IBX, UIX and NCPX for SET2 

ACS-2D ACS-3D IBX UIX NCPX 
Instance Best  known 

solution Mean  
violations 

Mean  
violations 

Mean  
violations 

Mean  
violations 

Mean  
violations 

10_93 3 4.24 4.03 4.00 3.99 3.55 
16_81 0 0.12 0.58 0.65 0.77 0.03 
19_71 2 2.08 2.04 2.26 2.75 2.00 
21_90 2 2.63 2.02 2.25 2.47 2.00 
26_82 0 0.00 0.00 0.01 0.31 0.00 
36_92 2 2.29 2.03 2.41 2.61 2.00 
4_72 0 0.00 0.01 0.00 0.00 0.00 

41_66 0 0.00 0.00 0.00 0.00 0.00 
6_76 6 6.00 6.00 6.00 6.00 6.00 

Table 3. Results of the ACS-2D, ACS-3D, IBX, UIX and NCPX for SET3 

ACS-2D ACS-3D IBX UIX NCPX 
Instance Best  known 

solution Mean  
violations 

Mean  
violations 

Mean  
violations 

Mean  
violations 

Mean  
violations 

200_01 0 3.80 2.00 3.13 5.36 1.23 
200_02 2 4.14 2.38 3.93 5.91 2.94 
200_03 4 8.90 7.45 11.47 13.47 7.41 
200_04 7 9.86 7.87 7.47 10.85 7.39 
200_05 6 8.81 7.29 7.71 8.87 6.69 
200_06 6 6.87 6.03 6.00 9.50 6.00 
200_07 0 2.99 0.67 3.44 3.74 0.15 
200_08 8 8.00 8.00 8.00 8.00 8.00 
200_09 10 11.85 10.97 11.40 13.13 10.53 
200_10 19 21.44 20.19 20.72 24.28 21.40 
300_01 0 5.33 3.89 5.55 5.67 2.79 
300_02 12 13.15 12.57 14.78 15.10 12.02 
300_03 13 14.54 13.85 15.92 16.73 13.11 
300_04 7 10.33 8.69 10.98 12.03 7.71 
300_05 29 40.55 42.54 39.39 43.42 42.83 
300_06 2 7.59 5.79 8.24 8.31 5.30 
300_07 0 2.89 0.97 3.78 3.92 0.08 
300_08 8 9.17 8.95 9.11 10.00 8.00 
300_09 7 9.05 8.00 9.40 10.80 7.36 
300_10 21 34.63 32.56 32.23 32.33 28.48 
400_01 1 3.01 3.50 2.98 4.50 1.81 
400_02 15 23.28 23.82 23.41 23.52 19.31 
400_03 9 11.65 13.64 12.21 12.25 10.79 
400_04 19 21.96 20.38 20.37 29.26 19.12 
400_05 0 3.48 2.68 5.06 5.15 0.00 
400_06 0 4.20 1.53 4.44 6.79 0.16 
400_07 4 7.65 8.68 5.59 6.41 4.72 
400_08 4 11.54 12.67 7.22 7.40 4.73 
400_09 5 17.98 16.01 17.38 17.45 10.58 
400_10 0 4.24 2.66 4.79 6.09 0.71 

instance, the best known solution and the average number of violations found. By 
comparing the three crossover operators, one observes that NCPX crossover outper-
forms the two others for 6 of the 9 instances and obtains similar results on the 3 re-
maining instances. The efficiency of NCPX crossover is confirmed by comparing its 
results to those of the two ACS algorithms. Indeed, GA with NCPX crossover outper-
form the two ACS on 5 of the 9 instances (10_93, 16_81, 19_71, 21_90 and 36_92) 
while obtaining exactly the same results on the 4 other instances. 
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Table 3 summarizes the results obtained by the crossover operators and the 2 ACS 
algorithms for SET3 in the same way as Table 2. Once again, each instance was solved 
100 times by each algorithm. One notes that both IBX and NCPX crossover outperform 
UIX on all problems except for instance 200_08 for which the results are equal. In com-
paring IBX to NCPX, we observe that the results for NCPX are better than those for 
IBX on 26 of the 30 instances, equal on 2 (200_06 and 200_08) and worse only on in-
stances 200_10 and 300_05. Once again the efficiency of the NCPX approach is con-
firmed by comparing its results to those of the 2 ACS algorithms. Indeed, one notes that 
GA with NCPX outperforms the ACS-2D algorithm on 28 instances, obtains equal re-
sults for instance 200_08, and is worse for 300_05. Comparing ACS-3D to GA with 
NCPX, we observe that the GA obtains better results for 26 instances, is equal for in-
stance 200_08 and is worse for 3 instances (200_02, 300_05, 200_10). We note, by the 
way, that the gap between the algorithms increases with size of the problems. 

Table 4. Results of the ACS-2D, ACS-3D and NCPX all with local search for SET2 and SET3 

ACS-2D + local search ACS-3D + local search NCPX+local search Instance Best known 
solution Mean conflicts Mean conflicts Mean conflicts 

10_93 3 3.80 3.37 3.09 
16_81 0 0.00 0.03 0.00 
19_71 2 2.00 2.00 2.00 
21_90 2 2.00 2.00 2.00 
26_82 0 0.00 0.00 0.00 
36_92 2 2.00 2.00 2.00 
4_72 0 0.00 0.00 0.00 
41_66 0 0.00 0.00 0.00 
6_76 6 6.00 6.00 6.00 

200_01 0 1.00 0.41 0.21 
200_02 2 2.41 2.00 2.01 
200_03 4 6.04 5.76 5.28 
200_04 7 7.57 7.00 7.00 
200_05 6 6.40 6.16 6.00 
200_06 6 6.00 6.00 6.00 
200_07 0 0.00 0.00 0.00 
200_08 8 8.00 8.00 8.00 
200_09 10 10.00 10.00 10.00 
200_10 19 19.09 19.02 19.06 
300_01 0 2.15 1.87 0.11 
300_02 12 12.02 12.01 12.00 
300_03 13 13.06 13.02 13.00 
300_04 7 8.16 7.70 7.32 
300_05 29 32.28 32.53 32.23 
300_06 2 4.38 3.59 2.63 
300_07 0 0.59 0.08 0.00 
300_08 8 8.00 8.00 8.00 
300_09 7 7.46 7.18 7.05 
300_10 21 22.60 22.25 21.36 
400_01 1 2.52 2.55 1.36 
400_02 15 17.37 17.46 16.85 
400_03 9 9.91 10.08 10.13 
400_04 19 19.01 19.01 19.00 
400_05 0 0.01 0.02 0.00 
400_06 0 0.33 0.10 0.00 
400_07 4 5.44 5.58 4.11 
400_08 4 5.30 5.24 4.04 
400_09 5 7.63 7.31 6.69 
400_10 0 0.95 0.89 0.00 
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In further numerical experiments, a local search procedure is added to the two ACS 
algorithms and the GA with NCPX crossover. In the ACS algorithms the local search 
procedure is applied to the best solution found at each cycle as well as to best overall 
solution. In the GA, the local search is applied during the 250 first generations to the 
best solution found if this solution is improved with a probability of 19% as well as to 
the best overall solution. Table 4 reports the results obtained by the three modified al-
gorithms for SET2 and SET3. First, we observed that the performance of the GA with 
NCPX crossover combined with local search is globally improved on the two sets. By 
comparing the three modified algorithms on SET2, one notes that ACS-2D with local 
search and GA with local search always obtain the best known solution except for in-
stance 10_93. The ACS-3D does not attain the best known solution for instances 
10_93 and 16_81 but the deviation from the best known solution for problem 16_81 is 
negligible. However, the GA approach clearly outperforms the two ACS algorithms 
on problem 10-93. When we look at the result on SET3, in comparing ACS-2D with 
local search and NCPX with local search we see that the GA approach outperforms 
the first ACS algorithm on 24 problems and is worse in only 1 instance. For the 5  
remaining instances the 2 algorithms obtain equal results. By comparing NCPX with 
local search and ACS-3D with local search, one notes that the GA obtains better  
results on 21 instances, is equal on 6 and is worse on problems 200_01 and 400_03. 

5   Conclusions 

This paper described three new crossover operators for the traditional car sequencing 
problem. The performance of these operators has been tested using three standard 
benchmarks available on the internet. Computational experiments allow us to deter-
minate that the NCPX operator is the best performer. Moreover, the quality of the  
results produced by this operator appears to be better than that of well known  
approaches, mainly in large problem instances.  One notes that even if the IBX and 
UIX operators obtain somewhat poorer overall results than NCPX, their performance 
is still of interest.   In future work, we feel that a combination of the three operators in 
the same algorithm will probably produce good results, although as yet we have no 
experimental confirmation.   

These results, though encouraging, reveal a certain deficiency in the search intensi-
fication using our approach as shown by the results of the addition of a local search 
procedure. In future work, it would be interesting to investigate the use of more so-
phisticated hybridization mechanisms. It would also be interesting to apply these ap-
proaches to more complex industrial problems. 
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